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Coverage Control for Multi-Robot Teams With
Heterogeneous Sensing Capabilities

Marı́a Santos1, Yancy Diaz-Mercado2 and Magnus Egerstedt1

Abstract—This letter investigates how mobile agents with
qualitatively different sensing capabilities should be organized
in order to effectively cover an area. In particular, by encoding
the different capabilities as different density functions in the
locational cost, the result is a heterogeneous coverage control
problem where the different density functions serve as a way of
both abstracting and encapsulating different sensing capabilities.
However, different density functions imply that mass is not
conserved as the agents move and, as a result, the normal
cancellations that occur across boundaries between regions of
dominance in the homogeneous case no longer take place when
computing the gradient of the locational cost. As a result, new
terms are needed if the robots are to execute a descent flow in
order to minimize the locational cost, and we show how these
additional terms can be formulated as boundary-disagreement
terms that are added to the standard Lloyd’s algorithm. The
results are implemented on real robotic platforms for a number
of different use cases.

Index Terms—Multi-robot systems, networked robots, dis-
tributed robot systems.

I. INTRODUCTION

COVERAGE control concerns itself with the problem of
distributing a collection of mobile sensor nodes across a

domain in such a way that relevant environmental features
and events are detected by at least one sensor node (with
sufficiently high probability), e.g., [1], [2]. Different ways
of encoding this have been proposed, including the construc-
tion of networks with particularly effective topologies, e.g.,
triangulations [3], [4], deployment according to spatial point
processes with desired probability characteristics [5], and the
partition of the domain into useful regions of dominance,
where each node is in charge of covering its own region [6].

In particular, if a team of N planar robots with positions
pi ∈ D ⊂ R2, i = 1, . . . , N , are to cover a convex domain
D, one natural choice is to let Robot i be in charge of the
points in D that are closest to pi, i.e., to let Robot i’s region
of dominance be given by the Voronoi cell

Vi(p) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j ∈ N},
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where p is the combined positions of all the robots
[pT1 , . . . , p

T
N ]T and N is the index set {1, . . . , N}.

Given a Voronoi partition of the domain into regions of
dominance, one can now ask how well the team is actually
covering the area. This question is typically asked relative
to an underlying density function φ : D → [0,∞), which
captures the relative importance of points in the domain, with
φ(q) > φ(q̂) meaning that q is more important, has a higher
probability of being a place where an event will occur, or
contains more relevant features than point q̂, as discussed
in [6]. If we furthermore assume that the quality of the
measurements that Robot i makes is higher for points that
are closer to Robot i, the quality of the coverage obtained in
region Vi(p) can be encoded through the cost∫

Vi(p)

‖q − pi‖2φ(q) dq,

with a better coverage corresponding to a lower cost. Summing
over all agents thus yields the so-called locational cost

Hhom(p) =
∑
i∈N

∫
Vi(p)

‖q − pi‖2 φ(q) dq, (1)

as described in [2] as a way of capturing the coverage
performance, and where the subscript hom refers to the fact
that all the robots have the same sensing capabilities, i.e., the
team is homogeneous.

The question pursued in this letter is how to introduce
heterogeneity into this formulation in a way that reflects the
capabilities of the different robots in a natural manner when
the sensing modalities are qualitatively different. A number
of approaches to the heterogeneous coverage problem have
been proposed, focusing on sensor ranges [7], [8], robot foot-
prints [9], and motion performance [10] as the differentiating
features among the robots, encoded through weights in the
power diagram [11]. Heterogeneity has also been considered
in anisotropic sensor networks, where the domain partitions
accommodate the specific geometry of the sensor footprint
[12], [13]. However, in these cases the sensors still measure
the same types of features and, as a result, the density function
φ(q) is common to all the agents.

In this letter, we explicitly try to maintain some of the
structural advantages afforded by the formulation of the
coverage problem through a locational cost, while capturing
qualitatively different sensing capabilities distributed across
the robots. To this end, let S be a set of sensory modalities,
with each robot being equipped with a subset of these sensors,
denoted by s(i) ⊂ S . Moreover, for each sensor j ∈ S ,
there is a corresponding density of events or features in D
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that this particular sensor can detect. For example, a camera
can detect color variations associated with wilting crops on a
farm field, while chemical gas sensor arrays can be used to
measure soil conditions [14], [15]. As a result, we no longer
have a single density function, but rather a class of functions
φj : D → [0,∞), j ∈ S, with the density associated with
point q, as it pertains to Robot i, being given by

φs(i)(q) =
⊕
j∈s(i)

φj(q), (2)

where ⊕ is an appropriately chosen composition operator.
The choice of composition operator reflects how the densities
from the different sensors on the robot should be combined
in order to compute the overall density function. For example,
one simple way to combine the density functions is a direct
summation, ⊕

j∈s(i)

φj(q) =
∑

j∈s(i)

φj(q),

where the relative importance of a point is reflected by the sum
of its importance among different sensors. Another possible
composition is to pick the maximum density value among the
sensors on Robot i,⊕

j∈s(i)

φj(q) = max
j∈s(i)

φj(q).

This choice would ensure that the density associated with a
point corresponds to the highest relative importance measured
by its sensors.

This letter investigates what the implications are when
introducing qualitatively different sensing capabilities for the
purpose of coverage control. The outline of the letter is as
follows: In Section II, we recall how the standard, homoge-
neous locational cost formulation lends itself to a very elegant
descent algorithm for coverage control, known as Lloyd’s
algorithm, and formally introduce the heterogeneous locational
cost. The gradient to this new cost is derived in Section
III together with a gradient-based, distributed controller that
minimizes the cost. Section IV presents a series of experiments
on real robotic platforms that allows us to make observations
about the optimality of the proposed controllers. Lastly, Sec-
tion V provides conclusions.

II. LOCATIONAL COSTS

Recalling the locational cost for homogeneous coverage in
(1), one relevant question is how the robots should move in
order to minimize this cost. An approach to this could be to
let the individual robots move against the gradient of the cost,
i.e., to let

ṗi = −γi(p)
∂Hhom(p)

∂pi

T

, i ∈ N ,

for some positive, possibly state-dependent, gain γi(p), with
the result that

dHhom(p)

dt
= −∂Hhom(p)

∂p
Γ(p)

∂Hhom(p)

∂p

T

= −

∥∥∥∥∥∂Hhom(p)

∂p

T
∥∥∥∥∥

2

Γ(p)

,

where Γ(p) = diag(γ1(p), . . . , γN (p)) is a positive definite
diagonal matrix with the individual gains on the diagonal.

This descent formulation has two highly desirable proper-
ties, as discussed in [2]. On the one hand, it directly turns
Hhom into a Lyapunov function, amenable to the application
of LaSalle’s invariance principle as a way of showing conver-
gence to a stationary point. On the other hand, the distributed
nature of the team is encoded through a Delaunay adjacency
relationship [2] – Robots i and j only have to exchange
information if they share a boundary in the Voronoi tessellation
(as long as Γ(p) does not introduce additional dependencies).

Now, in order to compute the gradient to Hhom(p), Leibniz
integral rule must be applied, which contains terms involving
the derivative of the integrands as well as the domains over
which the integrals are defined. However, even though a small
change in pi results in a corresponding change to the boundary
of the Voronoi cell Vi(p), the net contribution from this change
to the locational cost is offset by the corresponding changes
to the locational cost from the boundaries of the adjacent
Voronoi cells, given that the density function, φ(q), is common
to all the agents and the total mass is conserved across D.
As a result, the domain terms in Leibniz rule cancel among
neighbors and only the integrand terms must be considered
when computing the gradient [1], [16], given by

∂Hhom(p)

∂pi
= 2

∫
Vi(p)

(pi − q)Tφ(q) dq.

It is possible to express this gradient in a more compact
form by defining the mass and center of mass associated with
Robot i’s Voronoi cell as

mi(p) =

∫
Vi(p)

φ(q) dq, ci(p) =

∫
Vi(p)

qφ(q) dq

mi(p)
,

which yields the gradient

∂Hhom(p)

∂pi
= 2mi(p) (pi − ci(p))T . (3)

Moreover, by letting the gain be

γi(p) =
κ

2mi(p)
,

the scaled descent algorithm becomes the well-known Lloyd’s
algorithm [17],

ṗi = −κ(pi − ci(p)), (4)

where κ > 0 is a proportional control gain. In fact, using
LaSalle’s invariance principle, Lloyd’s algorithm has been
shown to asymptotically achieve a centroidal Voronoi tes-
sellation (CVT), i.e., a configuration where, asymptotically,
pi = ci(p), which in turn is a necessary condition for optimal
coverage, as shown in [1].

As discussed in Section I, the objective behind this work is
to introduce heterogeneity in the sensing capabilities through
heterogeneous density functions constructed as in (2),

φs(i)(q) =
⊕
j∈s(i)

φj(q),

where s(i) ∈ S is the set of sensing modalities associated with
Robot i, S is the set of all such sensing modalities, and φj is
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the density associated with (and detectable by) sensor j ∈ S .
A direct usage of this formulation in the locational cost gives

HC(p) =
∑
i∈N

∫
Vi(p)

‖q − pi‖2φs(i)(q) dq. (5)

Note that, under this formulation, the original Voronoi partition
is employed, giving each individual robot the sole responsibil-
ity for its region of dominance. The reason for this is twofold,
namely (a) a desire to recover as much as possible from the
homogeneous coverage control case in terms of the structure
of the derivations, and (b) the fact that coordination emerges
explicitly from the regions of dominance – hence the subscript
C.

However, in the heterogeneous case, it is no longer true
that whichever area Robot i does not cover outside of Vi(p)
is automatically covered by the adjacent robots. Since the
robots may be equipped with different sensor suites, it may
be necessary to let coverage responsibilities encroach on other
robots’ cells, i.e., we no longer have a strict partition of the
domain into regions of dominance. In the extreme case, if
Robot i is the only robot equipped with a particular sensor,
and that sensor is needed to cover the whole domain (as well
as possible), it is necessary to define an additional cost over
the whole domain. As such, in order to let the agents embrace
their domain objectives, denoted by the subscript O, a different
locational cost is needed,

HO(p) =
∑
i∈N

∫
D
‖q − pi‖2φs(i)(q) dq, (6)

where each integral measures how well Robot i is covering
the entire domain D with respect to its particular sensor
configuration.

Armed with these two different locational costs, we let the
heterogeneous locational cost be given by a convex combina-
tion of the costs in (5) and (6),

Hhet(p) = σHC(p) + (1− σ)HO(p)

= σ
∑
i∈N

∫
Vi(p)

‖q − pi‖2φs(i)(q) dq

+ (1− σ)
∑
i∈N

∫
D
‖q − pi‖2φs(i)(q) dq, (7)

where σ ∈ (0, 1] acts as a regularizer between the two
competing objectives. We do not let σ = 0 since, with
this choice, no coordination among agents is present. The
effect of selecting different values of σ is further discussed
in subsequent sections.

These changes in the locational cost, as compared to the
homogeneous case, have significant implications for how the
gradient should be computed. In the following sections, we un-
tangle these implications and present a controller that achieves
convergence to the critical points of the heterogeneous loca-
tional cost in (7), which constitutes a necessary condition for
optimal, heterogeneous coverage.

III. HETEROGENEOUS GRADIENT DESCENT

If we were to obtain the gradient to the heterogeneous
locational cost in (7), a descent direction that achieves a local

minimizer could be computed for the robots. To this end, we
compute the gradient toHhet by considering the two locational
costs HC and HO separately, starting with the former of the
two.

Let Ni encode the Delaunay neighborhood of Robot i,
i.e., the set of agents whose Voronoi cells share a face with
agent i’s Voronoi cell, as was done in [18]. We can now
break ∂HC/∂pi down into three terms, namely Robot i’s
contribution, the contributions from robots in Ni, and the
contributions from the remaining robots,

∂HC
∂pi

(p) =
∂

∂pi

(∫
Vi(p)

‖q − pi‖2φs(i)(q)dq

)

+
∂

∂pi

∑
j∈Ni

∫
Vj(p)

‖q − pj‖2φs(j)(q)dq


+

∂

∂pi

 ∑
j /∈Ni∪{i}

∫
Vj(p)

‖q − pj‖2φs(j)(q)dq

 . (8)

We immediately note that the last term in the above expres-
sion does not depend on pi, and as such, will be zero. For the
remaining terms, we need to recall Leibniz integral rule:

Lemma 1 (Leibniz Integral Rule [16]). Let Ω(p) be a region
that depends smoothly on p such that the unit outward normal
vector n(p) is uniquely defined almost everywhere on the
boundary ∂Ω(p). Let

F =

∫
Ω(p)

f(q) dq.

Then,

∂F

∂p
=

∫
∂Ω(p)

f(q)n(q)T
∂q

∂p
dq,

where
∫
∂Ω(p)

denotes the line integral over the boundary of
Ω(p).

This expression needs to be connected to the coordination
locational cost in (5). Assuming that Vi and Vj share a bound-
ary, this boundary will be orthogonal to the line connecting
the Voronoi cell generators, as is observed in [19]. In other
words, for any point q on this boundary,(

q − pi + pj
2

)T

(pi − pj) = 0.

Differentiating this with respect to pi yields

(pj − pi)T
∂q

∂pi
= (q − pi)T . (9)

As (pj−pi)/‖pj−pi‖ is the unit outward normal from Vi on
this shared boundary, by dividing (9) by ‖pj − pi‖ the term
n(q)T ∂q

∂p in the integrand of Lemma 1 is obtained.
Considering coverage control when mass conservation no

longer holds is not new. For example, [8] considers coverage
control with visibility constraints and, analogously to what was
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done in [8], we can calculate the gradient to HC by applying
the Leibniz integral rule to (8),

∂HC
∂pi

= 2mi (pi − ci)T

+
∑
j∈Ni

∫
∂Vij
‖q − pi‖2

(q − pi)T

‖pj − pi‖
φs(i)(q) dq

−
∑
j∈Ni

∫
∂Vij
‖q − pj‖2

(q − pi)T

‖pj − pi‖
φs(j)(q) dq, (10)

where we, for notational convenience, have suppressed the
explicit dependence of p on ∂Vij – the boundary between
Voronoi cells Vi and Vj – and where

∫
∂Vij

refers to the line
integral evaluated along this boundary. Moreover, mi and ci
are the heterogeneous mass and center of mass in Robot i’s
Voronoi cell, given by

mi =

∫
Vi
φs(i)(q)dq, ci =

∫
Vi qφs(i)(q)dq

mi
. (11)

From the definition of the Voronoi tessellation, all points
on a boundary between cells are equidistant from the seeds
for those cells, i.e., for all q ∈ ∂Vij we have that ‖q − pi‖ =
‖q − pj‖. Substituting ‖q − pj‖ by ‖q − pi‖ in (10) yields

∂HC
∂pi

= 2mi (pi − ci)T

+
∑
j∈Ni

(∫
∂Vij

(q − pi)T
‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq

−
∫
∂Vij

(q − pi)T
‖q − pi‖2

‖pj − pi‖
φs(j)(q) dq

)
,

where the integral terms simplify to∑
j∈Ni

∫
∂Vij

(q − pi)T
‖q − pi‖2

‖pj − pi‖
(
φs(i)(q)− φs(j)(q)

)
dq.

(12)
From this, we directly see that the gradient of the coordination
term differs from the one obtained in the homogeneous case.
Since the densities are no longer the same in adjacent cells,
the net increase over Vi(p) caused by a small movement in
pi is not offset by the changes in adjacent Voronoi cells.
Note though that if the density functions are identical for
all robots, φs(i) = φs(j), i, j ∈ N , then the additional term
cancels out and the homogeneous gradient (3) from Section II
is immediately recovered.

In order to get the gradient expression in a more compact
form, we introduce the total mass and center of mass (both
interpreted in terms of line integrals) on the boundaries
between Voronoi cells using the following notation,

µij =

∫
∂Vij

‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq,

ρij =

∫
∂Vij

q
‖q − pi‖2

‖pj − pi‖
φs(i)(q) dq

µij
.

Plugging these into (12) yields the derivative of (5) with
respect to Robot i’s position

∂HC
∂pi

T

= 2mi(pi − ci)

+
∑
j∈Ni

µij (ρij − pi)− µji (ρji − pi) . (13)

The computation of ∂HO/∂pi is less involved as the area
of integration is the entire domain D, which does not depend
on the position of the agents,

∂HO
∂pi

=
∂

∂pi

(∫
D
‖q − pi‖2φs(i)(q) dq

)
= 2Mi(pi − Ci)

T . (14)

Here Mi and Ci denote the mass and center of mass of the
domain according to the density function of agent i, i.e.,

Mi =

∫
D
φs(i)(q) dq, Ci =

∫
D qφs(i)(q) dq

Mi
.

The gradient of the heterogeneous locational cost thus
becomes

∂Hhet

∂pi

T

= σ
∂HC
∂pi

T

+ (1− σ)
∂HO
∂pi

T

= 2σmi(pi − ci)

+ σ
∑
j∈Ni

µij (ρij − pi)− µji (ρji − pi)

+ 2(1− σ)Mi(pi − Ci). (15)

Letting Robot i follow a negative gradient flow establishes
the following heterogeneous gradient descent theorem.

Theorem 1 (Heterogeneous Gradient Descent). Let Robot i,
with planar position pi, evolve according to the control law
ṗi = ui, where

ui = −2κ (σmi(pi − ci) + (1− σ)Mi(pi − Ci))

− σκ
∑
j∈Ni

(µij (ρij − pi)− µji (ρji − pi)) . (16)

Then, as t → ∞, the robots will converge to a critical point
of the heterogeneous location cost in (7) under positive gain
κ > 0.

Proof. From (15), we already know the form for the gradient.
What remains to be shown is that convergence to a critical
point is indeed achieved.

Consider the total derivative of the locational cost

dHhet(p)

dt
=
∑
i∈N

∂Hhet

∂pi
ṗi = −κ

∥∥∥∥∥∂Hhet

∂p

T
∥∥∥∥∥

2

≤ 0. (17)

For (17) to be zero, we need ∂Hhet

/
∂p = 0, in which case the

control law becomes ṗi = 0. By LaSalle’s invariance principle,
the multi-robot system converges to the largest invariant set
contained in the set of all points such that dHhet(p)/dt = 0,
which are the critical points to the heterogeneous locational
cost in (7).

Note that, unlike the homogeneous case, CVTs are no
longer the only critical points to the locational cost. Indeed,
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TABLE I
SENSOR MODALITIES FOR THE DIFFERENT EXPERIMENTS

Sensor modalities: S Robot sensors

Exp. 1 {1} s(i) = 1 ∀i ∈ N
Exp. 2 {1, . . . , 6} s(i) = i ∀i ∈ N
Exp. 3 {1, . . . , 6} s(i) = i ∀i ∈ N

Exp. 4 {1, . . . , 4}
s(1) = s(2) = 1

s(3) = 2, s(4) = 3

s(5) = s(6) = 4

as it will be observed in Section IV, in some situations,
placing the agents in a CVT may yield higher costs than
non-CVT configurations. Determining whether the achieved
critical point is a local minimizer to the locational cost is
difficult to establish – this remains an open issue even in the
homogeneous case [16].

IV. EXPERIMENTAL RESULTS

The proposed heterogeneous coverage algorithm is imple-
mented on the Robotarium [20], a remotely accessible swarm
robotics testbed at the Georgia Institute of Technology, whose
arena serves as the region to be covered by the robot team.
The team is composed of six GRITSBots [21], which are
miniature, differential-drive robots. A webcam-based tracking
system provides information about the position and orientation
of the different robots in the team. This information is fed to
the control algorithm, which produces velocity commands for
the robots.

As the descent algorithm ultimately produces desired veloci-
ties ṗi, i ∈ N , an implicit assumption behind this construction
is that the robot dynamics can be expressed as (or at least
can execute) single integrator dynamics. But the differential-
drive configuration does not directly support single integrator
dynamics and, as such, the control commands resulting from
Theorem 1 must be converted into suitable, low level inputs for
the GRITSBots. To this end, let pi = (xi, yi)

T be the position
of Robot i, and θi its orientation. Then, the differential-drive
configuration can be modeled using unicycle dynamics,

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi,

where vi and ωi are the translational and rotational velocities
to be commanded to the robot, respectively. Using a model
similar to the one in [2], we can approximately convert the
single integrator dynamics into unicycle dynamics as follows,

vi = kv[cos θi sin θi]ṗi,

ωi = kω arctan

(
[− sin(θi) cos(θi)]ṗi
[cos(θi) sin(θi)]ṗi

)
,

with kv and kω positive gains.
To evaluate the control law in Theorem 1, its performance

is compared to a baseline controller. To this end, we compare
it to a heterogeneous version of Lloyd’s algorithm, whereby
ṗi = −κ(pi − ci(p)), where ci is evaluated using the hetero-
geneous densities as in (11). Given that the locational cost

TABLE II
DENSITY PARAMETERS FOR THE DIFFERENT EXPERIMENTS

αi νi (cm)
Agent i 1 2 3 4 5 6

Exp. 1 βi = 1
0

0

Exp. 2 βi = i
0

0

Exp. 3 βi = 1
−40
0

−20
0

0

20

0

−20
20

0

40

0

Exp. 4 βi = 1
−30
0

−30
0

0

20

0

−20
30

0

30

0

is an instantaneous measure, we moreover add a temporal
component by evaluating the total cost of the controllers∫ tf

0

Hhet(p(t))dt

under identical initial conditions.
The experiment consists of four different configurations

both in terms of the sensor suites assigned to the robots, s(i),
i ∈ N , and the density functions associated with each sensor
type, φj , j ∈ S. The sensory capabilities of each robot are
simulated using the overhead camera, which provides each
robot with the information that its sensors would measure
according to the corresponding density functions. Table I
shows the sensor modalities for each experiment. In the first
experiment, all the robots have the same sensor, therefore
being in an equivalent configuration to the homogeneous case.
Experiments 2 and 3 reflect situations where each robot has
a unique sensor configuration, while in Experiment 4 some
robots share sensor configurations.

Gaussian radial basis functions have been used in robotic
networks to model sensors whose noisy signals represent
physical quantities, such as magnetic forces, heat, radio signal,
or chemical concentrations [22]. Following along these lines,
for each sensor j ∈ S , the corresponding density function is
modeled as a bivariate normal distribution,

φj(q) =
βj

2π
√
|Σ|

exp

(
−1

2
(q − νj)T Σ−1(q − νj)

)
,

where νj is the mean of the density and Σ is the covariance
matrix, which is kept constant for all the sensors. βj serves as
a scale factor that models the strength of the density function.
Table II indicates the density parameters used for each of the
experiments, corresponding to the sensor modalities in Table
I. Note that the values for νj are measured with respect to the
center of the Robotarium arena, a 120× 70 cm rectangle.

A value of σ = 0.9 is used in all four experiments.
The value given to the regularizer σ is selected to favor the
coordination component, HC , over the domain objectives. A
comparison of the effect of different regularizer values on
the behavior of the robot team for the sensor configuration
of Experiment 4 is presented in Fig. 1, where we can ob-
serve that lower values of σ tend to excessively favor the
domain objectives term, HO, concentrating the robots around
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(a) σ = 0.50 (b) σ = 0.70 (c) σ = 0.90

Fig. 1. Effect of the regularizer term, σ, on the final configuration of the robot team for the sensor configuration of Experiment 4. As specified in Table
II, Robots 1 and 2 share the same density function, as do Robots 5 and 6. We can observe how, as the value of the regularizer decreases, the coordination
between agents vanishes, making the robots that share the same objectives crowd together.

their individual density functions and therefore reducing the
coordinated nature of the coverage algorithm.

Table III presents a comparison of the total cost observed for
the four sensor configurations, where both the heterogeneous
version of Lloyd’s algorithm and the descent law in Theorem
1 are executed for a total time of 2 minutes. Except for the first
experiment, which corresponds to the homogeneous case, the
total cost for the proposed algorithm is consistently smaller
than the total cost attained by the heterogeneous Lloyd’s
algorithm, which confirms that the control law in Theorem 1 is
better suited for teams with heterogeneous sensing capabilities.
The differences in performance between the two algorithms
are also depicted in Fig. 2, where the absence of the boundary
terms makes the heterogeneous version of Lloyd’s algorithm

TABLE III
COMPARISON OF THE OBSERVED TOTAL COST

Heterogeneous Lloyd’s Gradient Descent
Exp. 1 0.14 0.14
Exp. 2 1.68 1.08
Exp. 3 0.70 0.61
Exp. 4 0.67 0.53
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Fig. 2. Evolution of the cost Hhet(p(t)) with respect to time in Experiment
4. The difference between the cost for heterogeneous Lloyd’s and the proposed
gradient descent results from ignoring the boundary terms in (13) necessary to
minimize the heterogeneous cost. Note that the increase in cost around t = 40
is due to the fact that the algorithm assumes single integrator dynamics while
the actual robots are subject to nonholomic constraints.

converge to a configuration with a higher final cost, showing
that, for a heterogeneous cost, a CVT is not necessarily on its
own a minimizer for the cost function.

A group of ten robots is used to illustrate the team behavior
when σ = 1 in (16), that is, when the control law is solely
determined by the gradient of the coordination cost, HC . In
this case, the movement of a robot only depends on the values
of its density function within its Voronoi cell and boundaries.
Consequently, the team may be deterred from adequately
covering an area associated with a particular density function,
φj , if the robots equipped with the associated sensor, j, are
located in areas with low values of the density φj , and are
unable to move to higher density areas due to the position of
their Delaunay neighbors, as shown in Fig. 3b.

In Section II, HO was introduced as an additional locational
cost to palliate the lack of coverage of areas outside each
robot’s region of dominance when the team is equipped
with disjointed sets of sensors1. The results from the con-
vex combination of both locational costs, HO and HC , are
shown in Fig. 3a. This situation illustrates how the proposed
controller, thanks to the introduction of the domain objectives
term, achieves a better spatial configuration of the agents in
the domain while each robot still coordinates with the other
members of the team.

V. CONCLUSIONS

In this letter, we presented a new locational cost function
that encodes qualitatively different sensing capabilities through
heterogeneous density functions. In order to cover the areas of
interest, we adopted a distributed gradient descent approach
which drives the agents in the team in a direction that
decreases the cost. A series of experiments were performed on
a team of differential-drive robots to assess the performance
of the proposed gradient descent method as compared to
a heterogeneous version of Lloyd’s algorithm. The experi-
ments suggest that the additional terms obtained due to the
heterogeneous nature of the performance metric resulted in

1This letter has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes a multimedia
AVI format movie clip, which shows the effect of the domain objectives term
on the behavior of the multi-robot team. This material is 46.8 MB in size.
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(a) (b)

Fig. 3. A group of ten GRITSBots executing the control law in Theorem 1 with σ = 0.975, (a), versus a pure coordination algorithm, with σ = 1, (b). An
overhead projector is used to visualize relevant information in the robot arena. For Robot i, the filled circle represents the center of mass of its Voronoi cell,
ci, while the centers of mass on the boundary, ρij , j ∈ Ni, are depicted using crosses at the boundaries of the cells. For this experiment, each robot has a
unique sensor configuration with only one sensor. The location of the mean of the associated density function, φs(i) = φi, corresponds to the empty circle
labeled with the robot’s numerical identifier. Making σ = 1 implies the sole consideration of the coordination term in the control law, which may result in
some robots staying in areas with low information density, as in (b). This situation is alleviated by making σ < 1 in the control law and therefore involving
the term HO , which allows the robot team to attain a better spatial configuration in the domain, (a).

overall better coverage than a heterogeneous version of Lloyd’s
algorithm for a number of different density configurations.
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