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Abstract— This paper introduces a minimum-energy ap-
proach to the problem of time-varying coverage control. The
coverage objective, encoded by a locational cost, is reformulated
as a constrained optimization problem that can be solved
in a decentralized fashion. This allows the robots to achieve
a centroidal Voronoi tessellation by running a decentralized
controller even in case of a time-varying density function. We
demonstrate that this approach makes no assumptions on the
rate of change of the density function and performs the com-
putations in an approximation-free manner. The performance
of the algorithm is evaluated in simulation as well as on a team
of mobile robots.

I. INTRODUCTION

Coverage control deals with the problem of distributing
a collection of mobile robots in an environment such that
the surveillance of its features/events is optimized [1], [2],
[3]. The coverage performance of a team of robots over a
domain D is typically quantified with respect to a density
function, φ : q ∈ D 7→ φ(q) ∈ [0,∞), that encodes the
relative importance of the points in such a domain. While
many aspects of the coverage problem have been considered
in the literature, e.g. limitations on the robots’ motion [4],
[5], geometric variations on the sensors’ footprints [6], [7],
or different sensing capabilities [8]; oftentimes the density
functions φ considered are static and do not depend on time.

However, in some coverage applications, the importance
of the points in the domain may evolve over time due to,
for example, the tracking of moving targets [9], [10] or
new area objectives specified by a human operator [11],
[12]. In these cases, it may be advantageous to preserve
most of the structure of the coverage problem in [1] and
reflect the dynamic nature of these goals by considering the
density function to be time-varying, φ : (q, t) ∈ D × R+ 7→
φ(q, t) ∈ R+. Introducing this time dependence, however,
has implications on how to design distributed control laws
that allow the robots to effectively cover the density function.
Past approaches to this problem rely on limitations on the
rate of change of the density functions [9] or introduce
approximations [11] to produce a distributed controller that
optimizes the coverage performance over time.
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In this paper, we propose a constraint-based approach
to the time-varying coverage problem that can be executed
in an exact, decentralized fashion without imposing any
conditions on the rate of change of the density functions.
In addition, this constraint-based strategy naturally lends
itself composable with additional behaviors that could be
concurrently executed by the multi-robot team, e.g. energy
saving, collision avoidance [13].

This paper is organized as follows: In Section II, we
formally introduce the problem of multi-robot coverage and
discuss some of the existing strategies for time-varying
coverage control. In Section III, we introduce the technical
details of the constraint-based task execution framework.
Using these results, the proposed strategy for time-varying
coverage control is presented in Section IV. This algorithm is
implemented on a real robotic platform and its performance
is compared to other approaches in Section V. Section VI
concludes the paper.

II. COVERAGE CONTROL WITH TIME-VARYING
DENSITY FUNCTIONS

A. Coverage control

Consider a team of N robots, whose positions are denoted
by xi ∈ Rd, i ∈ {1, . . . , N}, where d = 2 for planar robots
and d = 3 in the case of aerial robots. The objective of
the coverage control problem is to distribute this team of
mobile robots in a domain D ⊂ Rd with respect to a density
function that encodes the relative importance of the points
in D, φ : D → [0,∞), where φ(q) = 0 only for a finite
collection of points. As shown in [14], one natural choice
is to make Robot i, i ∈ {1, . . . , N} := N , be in charge of
covering the points that are closest to it,

Vi(x) = {p ∈ D | ‖p− xi‖ ≤ ‖p− xj‖, ∀j ∈ N},

that is, its Voronoi cell. The quality of coverage of the multi-
robot team can then be encoded through the cost [1],

H(x) =

N∑
i=1

∫
Vi(x)

‖xi − q‖2φ(q) dq, (1)

with a lower value of the cost corresponding to a better
coverage. Let

Gi(x) =

∫
Vi(x)

qφ(q) dq∫
Vi(x)

φ(q) dq
(2)

be the center of mass of the Voronoi cell of Robot i. A
necessary condition for (1) to be minimized is that the

mailto:maria.santos@gatech.edu
mailto:siddharth.mayya@gatech.edu
mailto:magnus@gatech.edu
mailto:g.notomista@gatech.edu


position of each robot corresponds to the center of mass of
its Voronoi cell [15], that is, the robots are in a centroidal
Voronoi tessellation (CVT).

In order to approach the centroidal Voronoi tessellation,
we can make the robots follow a direction of descent of the
type

x(k+1) = x(k) − αk
∂J

∂x
(x(k)),

where the superscript k denotes the time-step and J(x) is a
function whose stationary points are the centroidal Voronoi
tessellations [15]. A natural choice for J is

J(x) =

N∑
i=1

1

2
‖xi −Gi(x)‖2 =

n∑
i=1

Ji(x). (3)

Taking the derivative of Ji with respect to xi, one obtains,

∂Ji
∂xi

= (xi −Gi(x))T
(
I − ∂Gi(x)

∂xi

)
, (4)

where I is the identity matrix. Note that, even if Gi(x)
depends on the entire ensemble state of the robotic swarm,
x, Robot i only requires information about its Delaunay
neighbors to compute it. Thus, the gradient in (4) can be
calculated in a decentralized fashion.

B. Time-Varying Densities

The formulation of the coverage control problem in (1)
considers a static density function, φ(q), over the domain of
interest, that is, the relative importance of the points does
not change over time. In situations where the importance of
the points in the domain may vary with time, however, the
density function of the domain is time-variant. Considering
a time-varying density function φ : (q, t) ∈ D × R+ 7→
φ(q, t) ∈ R+, results in the following locational cost,

H(x, t) =

N∑
i=1

∫
Vi(x)

‖q − xi‖2φ(q, t) dq. (5)

Assuming that the variation on the density function over
time was quasi-static [9], a control law that minimizes (5) is

ui = Ġi(x, t)−

(
κ+

Ṁi(x, t)

Mi(x, t)

)
(xi −Gi(x, t)), (6)

with Mi(x, t) =
∫
Vi(x)

φ(q, t) dq, Gi(x, t) defined as in
(2) with the time-varying density, φ(q, t), instead. The time
derivatives in (6) are computed as follows,

Ṁi =

∫
Vi

φ̇(q, t) dq, Ġi =
1

Mi

(∫
Vi

qφ̇(q, t) dq −MiGi

)
,

where we have suppressed the dependencies Mi, Gi and their
time derivatives on (x, t) and the dependency of Vi on x for
notational convenience.

The restrictiveness of the quasi-static approach in [9]
motivated a different approach in [11]. As illustrated in [11],
[16], considering the time-varying version of the cost in (3),

J(x, t) =

N∑
i=1

1

2
‖xi −Gi(x, t)‖2 =

n∑
i=1

Ji(x, t), (7)

one can achieve a CVT, without imposing conditions on the
variation of φ(q, t), by setting

u =

(
I − ∂G

∂x

)−1(
κ(G(x, t)− x) +

∂G

∂t

)
, (8)

where G = [GT1 , . . . , G
T
N ]T .

However, inverting the matrix I − ∂G
∂x in (8) cannot be

done in a decentralized fashion. For this reason, in [11], the
inverse is approximated by a truncated Neumann series as(

I − ∂G

∂x

)−1
≈ I +

∂G

∂x
(9)

which allows each robot to evaluate its corresponding term
based solely on information about its Delaunay neighbors.
As discussed in Section I, this paper presents a decentralized
solution to the time-varying coverage control problem which
does not require us to make any such approximations. Next,
we introduce some of the tools necessary to develop such an
algorithm.

III. TECHNICAL BACKGROUND

This paper uses the constraint-based task execution frame-
work introduced in [13] to perform coverage control in the
presence of time-varying density functions. Consequently,
this section introduces some of the tools required to develop
the proposed algorithm which will be presented in Section
IV.

The execution of a task by a robot can be encoded
using the following pointwise minimum-energy constrained
optimization problem,

min
u
‖u‖2 s.t. ctask(x, u) ≥ 0,

where u is the control effort expended by the robot, x is
its state, and ctask symbolizes a constraint function which
ensures the execution of the task. Such a constraint-based
formulation is advantageous in terms of its suitability for
long-term autonomy applications as well as composability
with other tasks that need to be performed [17], [18]. The
initial formulation in this section considers constraints that
do not explicitly depend on time. Later in the section, the
time-varying formulation is presented.

The feasibility of this task execution framework is ensured
by the introduction of slack variables in the constraint:

min
u,δ
‖u‖2 + |δ|2 (10)

s.t. ctask(x, u) ≥ −δ,

where δ is the slack variable and signifies the extent to
which the task constraint can be violated. An effective way
of enforcing such constraints in a multi-robot system is to
use control barrier functions, which are introduced next.

A. Control Barrier Functions

Consider a dynamical system in control affine form,

ẋ = f(x) + g(x)u,



where x ∈ Rn, u ∈ U ⊆ Rm, with f and g being
Lipschitz continuous vector fields. Consider a continuously
differentiable function h : Rn → R, and define the safe set
S as its zero-superlevel set:

S = {x ∈ Rn | h(x) ≥ 0}. (11)

The function h is called a (zeroing) control barrier function
(CBF) if the following condition is satisfied:

sup
u∈U
{Lfh(x) + Lgh(x)u+ α(h(x))} ≥ 0 ∀x ∈ Rn,

(12)
where α is a locally Lipschitz extended class K function [19],
and Lfh(x) and Lgh(x) denote the Lie derivatives of h in the
directions f and g, respectively. The following theorem from
[19], [13] summarizes two important properties of zeroing
CBFs.

Theorem 1. Given a dynamical system in control affine form
ẋ = f(x) + g(x)u, where x ∈ Rn and u ∈ Rm denote
the state and the input, respectively, f and g are locally
Lipschitz, and a set S ⊂ Rn defined by a continuously
differentiable function h as in (11), any Lipschitz continuous
controller u such that (12) holds renders the set S forward
invariant and asymptotically stable, i. e.,:

x(0) ∈ S ⇒ x(t) ∈ S ∀t ≥ 0

x(0) /∈ S ⇒ x(t)→∈ S as t→∞,

where x(0) denotes the state x at time t = 0 and the notation
x(t)→∈ S indicates that x(t) asymptotically approaches the
set S.

Proof. See [19] and [13].

In this paper, we encode the execution of the time-varying
coverage control task via a zeroing CBF-based constraint
for each robot. Consequently, the zeroing CBFs themselves
explicitly depend on time. To this end, the definition of
zeroing CBFs given in [19] is extended for the time-varying
case.

Definition 2 (Time-Varying CBFs [20]). Given a function
h : Rn × R+ 7→ R, continuously differentiable in both its
arguments, consider a dynamical system in control affine
form ẋ = f(x) + g(x)u, where x ∈ Rn and u ∈ Rm
denote system state and input, respectively, f and g are
locally Lipschitz, and the set S = {x ∈ Rn | h(x, t) ≥ 0}.
The function h is a time-varying zeroing CBF defined on
Rn × R+, if there exists a locally Lipschitz extended class
K function α such that, ∀x ∈ Rn, ∀t ∈ R+,

sup
u∈U

{
∂h

∂t
+ Lfh(x, t) + Lgh(x, t)u+ α(h(x, t))

}
≥ 0.

(13)

We now demonstrate how CBFs can be incorporated into
the constrained optimization problem (10) to accomplish the
execution of robot tasks.

B. Minimum-Energy Gradient Descent

The execution of tasks which involve the minimization
of a cost function J—such as the coverage control task
investigated in this paper—can be achieved by generating
a control signal u(t) using the optimization problem

min
u
J(x), (14)

where x and u are coupled through the single integrator
dynamics ẋ = u. In [13], we show that solving (14) in
order to synthesize u(t) is equivalent to solving the following
constraint-based optimization problem, in the sense that they
both achieve the goal of minimizing the cost J :

min
u,δ

‖u‖2 + |δ|2

s.t.
∂h

∂x
u ≥ −α(h(x))− δ

(15)

where δ ∈ R is the slack variable signifying the extent to
which the task constraint can be violated, α is an extended
class K function, and h(x) = −J(x) is a zeroing CBF.
The zero-superlevel set of h is S = {x | h(x) ≥ 0} =
{x | J(x) ≤ 0} = {x | J(x) = 0}, where the last equality
holds because the cost J(x) is a non-negative function.

The following proposition, proved in [13], establishes how
the constraint-based optimization problem given in (15),
allows the accomplishment of the task encoded by J(x).

Proposition 3. The solution of the optimization problem
(15), where h(x) = −J(x) and α is an extended class K
function, solves (14), driving the state x of the dynamical
system ẋ = u to a stationary point of the cost J .

In fact, for the special case when J is strictly convex and
J(0) = 0, we have that

∂J

∂x
(x) 6= 0, ∀x 6= 0.

Consequently, using Theorem 1 we get x →∈ S, i. e.
J(x(t))→ 0, as t→∞.

Using the above described formulation, this paper encodes
the problem of covering a time-varying density function as
a constraint-based optimization problem in Section IV. But
first, we discuss the conditions under which the optimization
problem in (15) can be solved in a decentralized fashion.

C. Decentralized Constraint-Based Control of Multi-Robot
Systems

Assume that each robot in the multi-robot team is able to
measure the relative positions of a subset of the robot team
as described by an undirected graph G = (V, E), where V =
{1, . . . , N} is the set of vertices of the graph, representing
the robots, and E ⊆ V × V is the set of edges between the
robots, encoding adjacency relationships. For example, the
adjacency relationships for the multi-robot coverage control
task investigated in this paper is described by a Delaunay
graph [1].

Let x = [xT1 , . . . , x
T
N ]T ∈ RNd denote the ensemble

state of the multi-robot team. As the robots are solving a



time-varying coverage control problem, we consider a time-
varying total cost J(x, t). Then, a general expression for this
cost that leads to decentralized control laws [16] is given by

J(x, t) =

N∑
i=1

∑
j∈Ni

Jij(‖xi − xj‖, t), (16)

where Ni is the neighborhood set of Robot i, and Jij :
R+ × R+ → R+, Jij(‖xi − xj‖, t) = Jji(‖xj − xi‖, t)
is a symmetric, pairwise cost between robots i and j. We
assume that Jij(x, t) ≥ 0, ∀(i, j) ∈ E , ∀x ∈ Rn, t ∈ R+,
so that J(x, t) ≥ 0, ∀x ∈ Rn, t ∈ R+. It should be noted
that (7) can be written in the form of (16) as a consequence
to the graph topology induced by the Voronoi partition.

The following proposition outlines the optimization prob-
lems whose solutions lead to a decentralized minimization
of the cost J(x, t) in (16).

Proposition 4 (Constraint-driven decentralized time-varying
task execution). Given the time-varying pairwise cost func-
tion J defined in (16), a collection of N robots, obeying
single integrator dynamics, minimizes J in a decentralized
fashion, if each robot executes the control input, solution of
the following optimization problem:

min
ui,δi

‖ui‖2 + |δi|2

s.t. − ∂Ji
∂xi

ui ≥ −α(−Ji(x)) +
∂Ji
∂t
− δi,

(17)

where Ji(x, t) =
∑
j∈Ni

Jij(‖xi − xj‖, t) and α is an
extended class K function, α : x ∈ R 7→ α(x) ∈ R,
superadditive for x < 0, i. e. α(x1 + x2) ≥ α(x1) +
α(x2), ∀x1, x2 < 0.

Proof. Using (13) from Definition 2, the proof follows
similar to [13].

We are now ready to present a novel approach for execut-
ing decentralized approximation-free coverage control under
time-varying density functions using a team of robots.

IV. AN EXACT AND DECENTRALIZED
APPROACH TO TIME-VARYING COVERAGE

As described in Section II, effective coverage of a domain
can be achieved by driving the robots to the stationary points
of the time-varying cost functional J(x, t) given in (7), which
correspond to the CVT. To this end, we allow each Robot i to
solve the optimization problem presented in (17). Plugging in
expressions for the partial derivatives of Ji(x, t) as pertaining
to the time-varying coverage control problem, (17) yields,

min
ui,δi

‖ui‖2 + |δi|2

s.t. − (xi −Gi(x, t))T
(
I − ∂Gi(x, t)

∂xi

)
ui

≥ −α(−Ji(x, t))− (xi −Gi(x, t))T
∂Gi(x, t)

∂t
− δi,

(18)

which is both exact and decentralized. The partial derivatives
of the Gi(x, t) are given by [21],

∂Gi(x, t)

∂xi
=
∑
j∈Ni

∫
∂Vij(x)

(q −Gi(x, t))φ(q, t)(q − xi)T dq

mi(x, t)‖xj − xi‖
,

∂Gi(x, t)

∂t
=

∫
Vi(x)

(q −Gi(x))∂φ(q,t)∂t dq

mi(x, t)
,

with mi(x, t) =
∫
Vi
φ(q, t) dq the mass in the Voronoi cell

of Robot i.

Proposition 5. Consider a team of N single-integrator
robots, tasked with covering a region as specified by a time-
varying importance density function. Under u∗, solution of
(18), where α is a superlinear extended class K function, the
robots achieve a CVT.

Proof. From Proposition 4, we know that executing u∗

will drive the robots towards a stationary point of the cost
function J . As discussed in Section 5.4 of [15], any search
algorithm that attains the stationary points of the cost J ,
achieves a CVT configuration.

We further demonstrate that, under the assumption that
the robots do not have actuator limitations, the optimization
problem presented in (18) can be reformulated to exclude
slack variables in the optimization problem.

Proposition 6. Consider a team of N single-integrator
robots with no actuator constraints, i.e., U = Rm, tasked
with covering a region as specified by a time-varying im-
portance density function. Let each robot solve the following
problem:

min
ui

‖ui‖2

s.t. − (xi −Gi(x, t))T
(
I − ∂Gi(x, t)

∂xi

)
ui

≥ −α(−Ji(x, t))− (xi −Gi(x, t))T
∂Gi(x, t)

∂t
.

(19)
Under the control action generated by this optimization
problem, the robots achieve a centroidal Voronoi tessellation
(CVT).

Proof. The total time derivative of the time-varying coverage
cost function J(x, t) given in (7) can be expressed as,

J̇ =

N∑
i=1

J̇i(x) =

N∑
i=1

(
∂Ji
∂xi

ui +
∂Ji
∂t

)

=

N∑
i=1

(xi −Gi(x, t))T
(
I − ∂Gi(x, t)

∂xi

)
ui

−
N∑
i=1

(xi −Gi(x, t))T
∂Gi(x, t)

∂t
.

Consequently, given the superadditivity property of α and
summing over the constraints corresponding to each Robot



Fig. 1. Evolution of the integral of the cost, J(x, t), over time for
the proposed constraint-based approach, Lloyd’s algorithm [14] as well as
the centralized and decentralized controllers in [11]. The final value of
the cumulative cost for the proposed algorithm is very similar (although
slightly lower) to the controllers that consider the effects of the time-varying
densities in [11]. Ignoring the effects of a time-varying density function
causes an appreciable difference in the case of Lloyd’s algorithm. Inset
highlights differences in costs towards the end of the experiment.

i ∈ N in the optimization problem (19), we get,

J̇(x, t) ≤ α(−J(x, t))

Let ᾱ(r) = −α(−r). Then, by the properties of extended
class K functions, ᾱ is also an extended class K function.
Thus,

J̇(x, t) ≤ −ᾱ(J(x, t)),

and thus, by applying the comparison lemma [22], one can
observe that:

J(t) ≤ β(J(x0, 0), t),

with β a class KL function and x0 the configuration of the
robots at time t = 0. Therefore, J(x, t) → 0 as t → ∞,
that is, the system converges to a CVT since J(x, t) = 0⇔
xi(t) = Gi(x, t),∀i ∈ N .

V. SIMULATIONS AND EXPERIMENTAL RESULTS

The performance of the proposed constraint-based ap-
proach is evaluated in simulation as well as on a team of
differential drive robots on the Robotarium [23], a remotely
accessible multi-robot testbed at the Georgia Institute of
Technology. The experiment, uploaded via web, is remotely
executed on the Robotarium and the data is made available
to the user once the experiment is finalized. On each control
iteration, the Robotarium provides the poses of the robots
involved in the experiment and allows the user to specify
the linear and angular velocities of each robot in the team.

The proposed constraint-based controller in (18) is com-
pared in simulation with the standard Lloyd’s algorithm [14],
whereby ẋi = κ(Gi(x) − xi), κ > 0,∀i ∈ N ; and with
the centralized strategy in (8) from Lee et al. [11] as well
as with the decentralized variant that uses the Neumann
approximation in (9). In order to minimize the influence of
the proportional gain, the simulation parameter κ = 1 was
chosen for all three controllers. In the case of the proposed
controller, the extended class K function was α(x) = x

1
3 .

Fig. 2. Comparison of the cumulative control effort for the proposed
constraint-based approach, Lloyd’s algorithm [14] as well as the central-
ized and decentralized controllers in [11]. While the performance of the
algorithms in [11] are similar to the proposed approach in terms of the final
cost (see Fig. 1), the control effort required for the team to track the density
functions is higher.

The simulations are implemented on the Robotarium simu-
lator with the objective of providing a realistic framework
that considers robot dynamics and actuator bounds, thus
providing a fair comparison between the different algorithms.

As presented in Sections II and IV, the considered cov-
erage control algorithms assume that the robots move ac-
cording to single integrator dynamics. However, the robots
considered in this section have a differential drive kinematic
configuration, whose movement is best described by the so-
called unicycle dynamics,

ẋi = [vi cos θi, vi sin θi]
T , θ̇i = ωi,

where θi is the orientation of the robot. The control inputs
vi and ωi are the linear and angular velocities, which can be
calculated using the near-identity diffeomorphism in [24].

We consider the following time-varying density function
to be covered by a team of 6 differential drive robots over a
time interval of 60 seconds,

φexp(q, t) = 1

+ 103
1− sin

(
2π10−3t

)
2

e

(
− (qx+0.2)2−(qy+0.1)2

0.4

)
(20)

+ 103
1− sin

(
2π10−3t− π

2

)
4

e

(
− (qx−0.6)2−(qy−0.2)2

0.1

)
.

In order to compare the performance of the different algo-
rithms, one can compute the integral of the cost J(x, t) over
time [11], as a metric of how well the density function is
being tracked by the robot team,∫ t

0

J(x(τ), τ) dτ.

As it can be observed in Fig. 1, considering the effects of the
time-varying density makes our approach and the controllers
in [11] outperform Lloyd’s algorithm, which was designed
for the time-invariant case. However, while producing similar
coverage of the density function, some algorithms may
require higher control efforts from the robots than others.
Therefore, we use the following metric to measure the



Fig. 3. Snapshots from the time-varying coverage control experiment deployed on a multi-robot team operating on the Robotarium [23]. The time-varying
density function is depicted by projecting its contour plot onto the testbed. As seen, using the constraint-based coverage algorithm, the robots track the
centroids of their Voronoi cells, depicted as gray circles.

Fig. 4. Evolution of the cost J(x, t) for the proposed minimum energy
coverage algorithm. The constraint-based approach drives the robots in
a direction which reduces the overall coverage cost considered in (7) to
zero. The temporary increases in the cost can be attributed to the fact that
the robots have actuator constraints and thus cannot track arbitrarily high
velocities generated by the optimization program. As the robots reduce the
distance from the moving centroids of their Voronoi cells, the cost goes
back towards zero.

amount of energy used by the robot team to cover the density
function, ∫ t

0

‖u(τ)‖22 dτ.

Figure 2 shows the control effort expended by the robots
when executing the different algorithms considered. While
the approaches from [11] produced similar cumulative costs
in Fig. 1, we can observe that the control effort demanded by
these controllers is higher than that of the proposed strategy
in this paper.

Figure 3 shows a series of snapshots of an experiment
executed on the Robotarium. Ten GRITSBots were deployed
to cover the density function in (20) for a total duration of
2 minutes. We can observe how the robots effectively track
the centroids of their Voronoi cells as the density function
changes over time. The evolution of the cost, J(x, t), for
this experiment is shown in Fig. 4, where the cost is kept
close to zero. The temporary increases in the cost around
t = 19s and t = 85s are due to the actuator constraints of
the robots, which limit their ability to maintain a CVT during
rapid changes of the density function.

VI. CONCLUSIONS

This paper develops an exact and decentralized algorithm
for the multi-robot time-varying coverage control problem.
In our approach, the coverage objective is encoded as a
constraint in a minimum-energy optimization program ex-
ecuted by each robot. Slack variables encoded within the
constraint ensure feasibility of the optimization program.
The performance of our algorithm is compared with other
approaches to demonstrate how the constraint-based method
effectively covers a region with time-varying importance
densities in a decentralized and approximation-free manner.
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