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Abstract— In this paper we consider a constrained coverage
control problem for a team of mobile robots. The robots
are asked to provide sensor coverage over a two-dimensional
domain, while being constrained to only move on a curve. The
unconstrained coverage problem can be effectively solved by
defining a locational cost to be minimized by the robots, in
a decentralized fashion, using gradient descent. However, a
direct projection of the solution to the unconstrained problem
onto the curve may result in a very poor spatial allocation
of the team within the two-dimensional domain. Therefore, we
propose a modification to the locational cost, which incorporates
the constraints, and a convex relaxation that allows us to
efficiently minimize a convex approximation of the cost using a
decentralized strategy. The resulting algorithm is implemented
on a team of mobile robots.

I. INTRODUCTION

The proliferation of robots operating in highly structured
environments can be attributed to the limited uncertainty
that such surroundings provide, which helps simplifying the
motion planning and control of the robots working in them,
e. g. [1], [2], [3], [4]. Although building the infrastructure
may be a high price to pay in order to reap such benefits,
applications for which the infrastructure is already in place
constitute the perfect scenario for robots to exploit. A promi-
nent case is that of wire-traversing robots, a technology used
in applications such as power transmission line maintenance
[5], environmental monitoring [6] or agriculture robotics [7].

For wire-traversing robots, the wires or cables are not only
essential for locomotion, but also act as passive supports
which are particularly good, from an energetic perspective,
for surveillance tasks. In fact, as opposed to aerial robotic
platforms, such as quadcopters, which demand high amounts
of energy to operate, the low-energy consumption of wire-
traversing robots makes them ideal candidates for long-term
tasks such as environmental monitoring [8]. And even fixed-
wing aerial robots, which are less energy consuming that
rotary-wing robots, are preferable over wire-traversing robots
only when the environment to monitor is sufficiently big and
stationary [8]. However, while significant amount of attention
has been paid to the mechanical design of wire-traversing
robots [9], [10], by developing mechanisms that enable ma-
neuvers such as obstacle avoidance [11] or wire transfer [12],
scant progress has been made on designing control strategies
that are suitable for environmental monitoring using robots
constrained to move on wires [13].
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Coverage control constitutes an effective strategy for en-
vironmental monitoring applications, as it deals with how
to distribute a collection of agents in the environment with
respect to an underlying density function, which represents
areas of interest within the domain [14]. A significant body of
work has been developed in the context of coverage control,
formulated initially for a convex domain with homogeneous
agents, e. g. [14]. This context has been subsequently modi-
fied to capture other assumptions, such as non-convex [15],
[16] or non-euclidean [17] environments, or introducing
heterogeneous teams of robots [18], [19], [20], among others.
However, the problem of covering a planar environment
while being constrained to move in a generic lower di-
mensional manifold remains mostly unexplored, with [13]
considering the case of a set of straight lines as constraint.

In this paper, we introduce a coverage control algorithm
that addresses the problem of how to cover a closed and
convex planar domain, D ⊂ R2, with a team of N agents
constrained to move on a smooth curve defined in D. We
consider the coverage objective of the team with respect
to the density function in the two-dimensional environment
as in [14], but reformulate the locational cost to include
the constraint that confines the robots to move on a one-
dimensional manifold. A convex relaxation is then introduced
such that the problem can be solved efficiently in a decen-
tralized fashion.

The remainder of the paper is organized as follows:
In Section II, we briefly introduce the coverage control
problem from [14] and highlight the problems that arise when
dealing with motion constraints. In Section III we present the
formulation of the coverage problem for planar robots that
are constrained to move on curves. A decentralized algorithm
to minimize a locational cost is proposed, which leverages
a convex relaxation of the cost. Section IV illustrates the
application of the derived algorithm on a team of ground
mobile robots tasked with environment surveilling.

II. COVERAGE CONTROL
A. Unconstrained Locational Optimization

The coverage problem for mobile sensors networks can be
formulated as the deployment of a set of N mobile planar
sensors in a closed and convex domain D ⊂ R2 according
to an information density function φ : D → [0,∞) [14].

When monitoring the domain D, a common strategy is
to assign to each agent the surveillance of the points in
the domain that are closest to it. If we let the position of
Robot i in the team be denoted by pi ∈ D, i ∈ {1, . . . , N},
then Robot i has the responsibility of covering the set
Vi(P ) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, j ∈ N}, with
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P = {p1, . . . , pN} being the positions of the agents andN =
{1, . . . , N} the index set. The partition {V1(P ), . . . ,VN (P )}
constitutes a Voronoi partition of the domain D under the
Euclidean metric [21].

Having established the partition of the space, each agent
can evaluate the coverage performance over its region of
dominance with respect to the density function, φ, which may
represent the information density spread over the domain.
Considering an isotropic sensing performance that degrades
with distance, a natural choice is to penalize the coverage
of a point based on the distance to the robot in charge of
covering it, that is, the further the point from the robot in
charge, the worse the coverage of that point [14]. Thus, the
robots’ performance can be encoded by the cost

H(P ) =
∑
i∈N

∫
Vi(P )

‖pi − q‖2φ(q) dq, (1)

with a lower value of the cost corresponding to a better
coverage of the domain.

Having defined a performance metric, the team can evolve
towards a critical point of the cost in (1) by making each
robot move in the direction of the negative gradient of the
cost. Given the gradient of (1) as in [14],

∂H
∂pi

(P ) = 2

∫
Vi(P )

(pi − q)Tφ(q) dq, (2)

each agent can evolve according to the dynamics ṗi =

− ∂H
∂pi

T
(P ) = κ(ρi−pi), with κ > 0 a proportional constant,

and mi =
∫
Vi(P )

φ(q) dq and ρi =
∫
Vi(P )

qφ(q) dq
/
mi the

mass and center of mass of the Voronoi cell Vi, respectively.

B. Constrained Locational Optimization

As discussed in the Introduction, the employment of wire-
traversing robots for environmental monitoring applications
can be advantageous in terms of motion planning and control
as well as energy requirements. In order to perform moni-
toring tasks while being constrained to move on wires, we
can define a constrained locational optimization problem.

In this section, we illustrate the problems that may arise
while trying to minimize the cost in (1) in the case of robots
constrained to move on a curve defined in the domain D.

To this end, let

c : s ∈ I ⊂ R 7→ p ∈ D ⊂ R2

be an arc-length parameterized, simple, regular and C2(I◦)
curve, i. e., a curve that is twice continuously differentiable in
the interior of the interval I and for which dc

ds 6= 0, ∀s ∈ I .
We define the set

C = {c(s) | s ∈ I} ⊂ D ⊂ R2

as the set of points belonging to the curve. We will refer
to c and C as the curve, making the distinction clear
when required. Thus, the constrained locational optimization
problem can be expressed as:

min
P
H(P )

s.t. pi ∈ C ∀i ∈ N ,
or, min

S
Hc(S), (3)

pi
ρi Vi

ṗi

pj
ρj Vj

ṗj
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ρk Vk
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Fig. 1. Poor spatial allocation of the robots obtained by executing projected
gradient descent to minimize the locational cost (1). The robots stop when
their velocities ṗi, ṗj and ṗk are orthogonal to the curve C .

where Hc(S) = (H◦c)(S) =
∑
i∈N

∫
Vi ‖c(si)−q‖

2φ(q) dq
and S = {s1, . . . , sN} ⊂ I × . . .× I s.t. c(si) = pi ∀i ∈ N .
Assuming the robots can move according to single integrator
dynamics on the curve, solving (3) using gradient descent
leads to the following decentralized control law:

ṡi = −∂Hc
∂si

(T ) = κ
dc

ds

T

(si) (ρi − c(si)) ∈ R, (4)

κ > 0 a proportional constant, where chain rule has been
leveraged to express ∂Hc

∂si
in terms of ∂H

∂pi
.

Then, the evolution in time of the cost Hc is given by:

Ḣc =
∂Hc
∂si

ṡi = −κ
∣∣∣∣∣dcdsT

(si) (ρi − c(si))
∣∣∣∣∣
2

≤ 0. (5)

The expression in (5) vanishes in the following cases: (i)

c(si) = ρi, (ii)
dc

ds
(si) = 0, or (iii) ρi − c(si) ⊥

dc

ds
(si). In

case (i), the position of Robot i coincides with the centroid of
its Voronoi cell Vi. Case (ii), by the regularity assumption
on the curve c, by definition, can never occur. Case (iii),
however, tells us that the speed of Robot i on the curve is
zero when the curve is orthogonal to the line segment joining
the position of Robot i and the centroid of its Voronoi cell.
This condition, typical of the projected gradient descent algo-
rithm (4), highlights the problem suffered by the constrained
locational cost optimization. Figure 1 schematically depicts
an example of what has been discussed in this section.

In the next section, we derive an algorithm that overcomes
this problem by solving a convex approximation of the
constrained optimization problem (3).

III. CONSTRAINED COVERAGE CONTROL

The discussion in Section II-B shows that, due to the
non-convexity of the cost and the constraints, a gradient
descent policy, albeit decentralized, can drive the robots to a
stationary point corresponding to a bad spatial distribution. In
this section, we show that the non-convexity of the problem
is caused by the shape of the curve and that not all curves
will result in non-convex problems. Indeed, under certain
circumstances, (3) can actually be a convex problem. This
gives insight on how to formulate the locational optimization
problem for robots constrained to move on generic curves,
as will be shown in the next section.
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Fig. 2. Example of coverage on a straight line. The depicted quantities are
used in (6) to derive the one-dimensional locational cost equivalent to (1).

A. Motivation

Let us consider the scenario depicted in Fig. 2. The domain
D is a rectangle and the curve C is a straight line parallel
to one of its sides. Assuming a constant density function
φ(q) = 1 ∀q ∈ D, we can rewrite the cost (1) as follows:

H(P ) =
∑
i∈N

∫
Vi(P )

‖pi − q‖2 dq

=
∑
i∈N

∫
Vi(P )

‖pi − qc‖2 dq︸ ︷︷ ︸
1©

+
∑
i∈N

∫
Vi(P )

‖q − qc‖2 dq︸ ︷︷ ︸
2©

,

where pi = [xi, h̄]T, q = [x, y]T and qc = [x, h̄]T is the
projection of q onto the curve C . Solving the integrals 1©
and 2©, yields:

1© =
∑
i∈N

∫ h

0

∫ bi

ai

|xi − x|2 dxdy = h
∑
i∈N

∫ bi

ai

|xi − x|2 dx

= hHc(X),

2© =
∑
i∈N

∫ h

0

∫ bi

ai

|y − h̄|2 dxdy =
∑
i∈N

wi

∫ h

0

|y − h̄|2 dy

=
∑
i∈N

wi

((
h− h̄

)3
3

+
h̄3

3

)
= C, (6)

where ai and bi are the x coordinates of the verti-
cal segments of the boundaries of the Voronoi cell Vi,
wi = |bi − ai|, h̄ is the y position of the curve C
(see Fig. 2), X = {x1, . . . , xN}, and C is a con-
stant. Thus, H(P ) = hHc(X) + C, and, therefore,
minP H(P ) ∼ minX Hc(X), i. e. the two minimization
problems are equivalent in the following sense:ßï

x∗1
h̄

ò
, . . . ,

ï
x∗N
h̄

ò™
= arg min

P
H(P )

⇔
{x∗1, . . . , x∗N} = arg min

X
Hc(X).

In [22], it is shown that in case the domain D is one-
dimensional and the density function φ is log-concave,
conditions satisfied by Hc(X) (characterized by a constant
density function), the minimization of the locational cost (1)
is a convex problem. Therefore, gradient descent methods
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Fig. 3. Reference system {s, n(s)} and other quantities used in the
derivation of the constrained locational cost Hc(P ).

can be used to synthesize a decentralized control law that
will drive the robots to a configuration corresponding to the
global minimum of (1).

In the following section, we extend the construction intro-
duced here to curves that are not necessarily straight lines.

B. Formulation for Generic Curves

Similarly to what has been done in Sec. III-A, in this
section we introduce a system of coordinates, using which
we evaluate the integrals that show up in the locational
cost H(P ). Fig. 3 depicts the domain D with a curve C ,
parameterized using the arc length s ∈ Is ⊂ R. The system
of coordinates {s, n(s)}, in which the points in the domain
will be expressed, consists of the curvilinear abscissa, s
(analogous to X in Fig. 2), and the normal to the curve at
s, n(s) analogous to Y in Fig. 2). Fig. 3 shows an example
of such coordinates for a point pi in the domain.

Proceeding as in Sec. III-A, using the system of coordi-
nates just defined, we can write:

H(P ) =
∑
i∈N

∫
Vi(P )

‖pi − q‖2 dq

≤
∑
i∈N

∫
Si

∫ φ2(s)

−φ1(s)

(
|pi,s − s|2 + |pi,n − n|2

)
dsdn

= Hc(P ), (7)

where pi = [pi,s, pi,n]T, Si = {s ∈ Is | c(s) ∈ Vi} is a union
of closed intervals, corresponding to the curve segments that
lie in the Voronoi cell Vi, and the functions φ1 and φ2, whose
values at s2 are shown in Fig. 3, will be defined later in the
section. Hc(P ) in (7) is analogous to (6) and, as a matter of
fact, it is its generalization to non-straight curves.

Since the goal is that of minimizing the upper bound of
H(P ) in (7), we make the following assumption on the curve
c in order to bound the same integral from below too, and
have a well-defined optimization problem.

Assumption 1. The curve c is such that:
k1 = max

u,v∈C

Äıuv2 − ‖u− v‖2
ä
<∞

k2 = max
u∈C
v∈D

(
‖u− v‖2c − ‖u− v‖2

)
<∞,

where ıuv denotes the arc length between the two points u
and v on the curve, whereas ‖u− v‖2c , ũvc

2
+ ‖v − vc‖2,
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Fig. 4. An example of deformation of the curve C in order to fulfill
Assumption 2. The actual curve is depicted in blue, while its deformation
is shown in orange. The Voronoi cells generated by the robots (red dots)
are shown in black.

vc being the point on the curve closest to v characterized
by the smallest curvilinear abscissa. The symbol ‖ · ‖c is an
abuse of notation, since it does not define a norm (nor even
a metric) as the triangle inequality does not hold. Note that
k2 ≥ k1 ∀u ∈ C , ∀v ∈ D.

Under Assumption 1, we can write:

−∞ < Hc(P )− k2|D| ≤ H(P ) ≤ Hc(P )− k1|D| <∞,

where |D| denotes the measure of the set D, therefore the
cost H(P ) is bounded above and below, as desired.

Now, in order to rigorously define φ1 and φ2, we need to
introduce an additional assumption on the curve C .

Assumption 2. The curve C intersects the boundary of the
domain D and of the Voronoi cells Vi, i ∈ N at right angle,
i. e. at the intersection points, the tangent to the curve is
orthogonal to the boundary of the Voronoi cells.

Remark 3. Any smooth curve c(s) can be continuously
modified (e. g. using bump functions [23]) in an arbitrarily
small neighborhood of the intersection points, in order to
satisfy the condition stated in Assumption 2. Figure 4 shows
an example of such a modification. Moreover, note that this
construction does not need to happen on the physical curve
on which the robots are constrained, since it is only required
in order to calculate the control inputs to the robots.

Under Assumption 2, the following fact holds.

Fact 4. Let

Φ(t) =
{
p ∈ Vi | ‖p− c(t)‖ ≤ ‖p− c(s)‖ ∀s ∈ Si

}
⊂ R2.

Then, under Assumption 2, |Φ(t)| = 0. Moreover, Φ(t) is a
segment of straight line orthogonal to the curve C at c(t).

Fact 4 is required in order for φ1(s), φ2(s) and conse-
quently the integrals in (7), to be well-defined. From Fact 4
it also follows that Φ(t) ⊂ span{n(t)}. Therefore, we can
use the following arc-length-parameterized line segment to
describe the set Φ(t):

φt : l ∈ R 7→ c(t) + l n(t) ∈ R2.

We are now ready to define φ1(s) and φ2(s) as follows:

φ1 : s ∈ Si 7→ max
l

{
‖φs(l)− φs(0)‖ | φs(l) ∈ Vi, l ≤ 0

}
φ2 : s ∈ Si 7→ max

l

{
‖φs(l)− φs(0)‖ | φs(l) ∈ Vi, l ≥ 0

}
.

Since Φ(t) is a line segment in R2, |Φ(t)| = 0, and so
the integrals in (7) have a geometric meaning that is entirely
analogous to that of (6) in Sec. III-A.

Observing that pi,n = 0, we can simplify (7) as follows:

Hc(P ) =
∑
i∈N

∫
Si

∫ φ2(s)

−φ1(s)

(
|pi,s − s|2 + |pi,n − n|2

)
dsdn

=
∑
i∈N

∫
Si

(
|pi,s − s|2φ(s) + φ̄(s)

)
ds, (8)

where φ(s) = φ1(s) + φ2(s) and φ̄(s) = φ1(s)3+φ2(s)3

3 .
As mentioned above, in case of one-dimensional domain

and log-concave density function, the locational cost mini-
mization is a convex problem [22]. The functions φ(s) and
φ̄(s), however, depend on the domain D, on the position of
the curve C in the domain and, at each time instant, on the
position of the robots along the curve, through the boundaries
of the Voronoi cells. Therefore, in general, φ(s) is not a log-
concave function.

In the following, Proposition 7 will give the expression
of a convex relaxation of the one-dimensional coverage
problem, given any, not necessarily log-concave, density
function. Using this, we will derive a decentralized algorithm
that minimizes Hc(P ) in (8).

C. Convex Relaxation of Constrained Coverage Control For-
mulation for Generic Curves

In order to formulate the convex relaxation problem, we
start by observing the following.

Observation 5. If I ⊂ R is compact, {V1, . . . ,VN} is
the Voronoi partition of I generated by the points P =
{p1, . . . , pN} ∈ I × . . .× I = IN , then

H(P ) =
∑
i∈N

∫
Vi(P )

|pi − q|2φ(q) dq (9)

is measurable, and hence square-integrable, on IN .

Let us define F = {f | f : R → R+} as the space of
functions that map real numbers to positive real numbers,
and let

F : F → L2(IN ) : θ 7→
∑
i∈N

∫
Vi(P )

|pi − q|2θ(q) dq (10)

be the mapping that associates to each function θ ∈ F
the coverage cost (which belongs to L2(IN ) as shown in
Observation 5) with density function θ. In (10), pi, q ∈ I ⊂
R, I compact and {V1, . . . ,VN} is the Voronoi partition of I
generated by P = {p1, . . . , pN} ∈ IN . Using this notation,
H(P ) in (9) can be expressed as F (φ).

Now, denoting with C = {f ∈ F | f is concave} ⊂ F
the set of concave functions that map from R to R+, we are
ready to state the convex relaxation problem as follows. The
convex cost, obtained by deriving a convex relaxation of (8),
is given by the solution to the following program:

min
θ∈C
θ>φ

‖F (θ)−F (φ)‖2L2(IN ). (11)



We insist on θ being pointwise greater than φ since, this way,
F (θ) ≥ F (φ) ∀P , and we preserve the upper bound on the
two-dimensional locational cost, initially stated in (7).

The last notion we need in order to formulate the expres-
sion of a convex relaxation of the one-dimensional coverage
control problem is given in the following definition.

Definition 6 (Concave envelope). Let f : X → R be a
real-valued function defined over the non-empty convex set
X ⊂ Rn. The function g : X → R is the concave envelope
of f over X , denoted by conc(f), if

i) g is concave over X ,
ii) g(x) ≥ f(x) ∀x ∈ X ,

iii) g(x) ≤ h(x) ∀x ∈ X , ∀h concave s.t. h ≥ f in X .

Proposition 7. The following is a convex relaxation of
the problem of minimizing the one-dimensional locational
optimization (9):

min
P

F (conc(φ)).

Proof. Expanding the L2 norm in (11), one has:

‖F (θ)−F (φ)‖2L2(IN ) =

∫
IN
|F (θ)−F (φ)|2

=

∫
IN

∣∣∣∣∣∑
i∈N

∫
Vi(P )

|pi − q|2 (θ(q)− φ(q))︸ ︷︷ ︸
∗©

dq

∣∣∣∣∣
2

.
(12)

As the term ∗© in (12) is positive, the minimum of ‖F(θ)−
F(φ)‖2L2(IN ) is achieved when the difference θ(q) − φ(q)
is minimized. As θ has to be concave and θ > φ, by
Definition 6, θ = conc(φ) minimizes (12).

With the result stated in Proposition 7, a decentralized
algorithm that allows the robots to minimize the cost defined
in (8) is derived in the following section.

D. A Decentralized Algorithm for Constrained Coverage
Control

Starting from (8), we can write:

Hc(P ) =
∑
i∈N

∫
Si

|pi,s − s|2φ(s) ds+
∑
i∈N

∫
Si

φ̄(s) ds

= F (P, φ) +G(P )

By Proposition 7, the problem of solving

min
P
Hc(P ) = min

P
(F (P, φ) +G(P ))

can be relaxed into

min
P

(F (P, conc(φ)) +G(P,ψ)) , (13)

where

F (P, conc(φ)) =
∑
i∈N

∫
Si

|pi,s − s|2(conc(φ))(s) ds (14)

is convex, and

G(P,ψ) =
∑
i∈N

∫
Si

(
|pi,s − s|2ψ(s) + φ̄(s)

)
ds, (15)

with ψ(s) = φ(s)− (conc(φ))(s) differentiable.
The following theorem provides an algorithm for solving

optimization problems where the cost function is the sum
of two terms: one convex (but not necessarily differentiable)
and the other differentiable (but not necessarily convex).

Theorem 8 (Theorem 3.1 in [24]). Consider the minimiza-
tion problem:

min
x

h(x) = min
x

(f(x) + g(x)),

where f : Rn → (−∞,+∞] is a convex, but not necessarily
differentiable, function and g : Rn → (−∞,+∞] is a
function which is continuously differentiable on an open
set containing the domain of f , but g need not be convex.
Then, the following algorithm is designed to generate critical
points of h:

Step 1: Set k = 0 and initialize x(k) with x0.
Step 2: Solve the convex optimization problem

x̃(k) = arg min
x

Å
f(x) +

∂g

∂x

∣∣∣∣
x=x(k)

x

ã
. (16)

Step 3: Find
x(k+1) = x(k) + λ(k)d(k), (17)

with λ(k) > 0, such that

h
Ä
x(k+1)

ä
≤ h
Ä
x(k) + λ(k)d(k)

ä
, (18)

where
d(k) = x̃(k) − x(k). (19)

Step 4: Check for convergence: ‖d(k)‖ < ε, where ε is some
prescribed positive number.

Step 5: k = k + 1

The functions F (P, conc(φ)) and G(P,ψ) in (13), satisfy
the conditions of f and g in Theorem 8. Thus, the previous
algorithm can be used to find minimum points of Hc(P ).

The calculation of ∂G
∂P is decentralized, hence the value

of P̃ (k) can be obtained in a decentralized way using (16).
The same holds for Step 3. A more careful analysis is
required to understand whether the inequality (18) can be
checked in a decentralized way. Given the expressions of
F (P, conc(φ)) and G(P,ψ) in (14) and (15), we can write
Hc(P ) =

∑
i∈N Hc,i(P ), therefore Hc(P ) ≥ Hc,i(P ) ≥

0, ∀i ∈ N . Thus, if each robot ensures that Hc,i
Ä
p

(k+1)
i

ä
≤

Hc,i
Ä
p

(k+1)
i + λ

(k)
i d

(k)
i

ä
, then Hc

(
P (k+1)

)
≤ Hc

(
P (k)

)
.

This means that condition (18) can be checked in a decen-
tralized fashion.

Assumption 9. As is the case of the unconstrained coverage
control in (1), it is assumed that the robots know the density
function over the domain.

Algorithm 1 summarizes what has been derived in Sec-
tions III-C and III-D, by describing a decentralized strategy
to perform constrained coverage control.



(a) Projected gradient descent: in the final configu-
ration, the vectors pointing from the robots to the
centroids of their Voronoi cell (blue) are orthogonal
to the tangent to the curve (green).

(b) One-dimensional coverage: the robots consider
the curve itself as the domain in the coverage prob-
lem formulation, instead of the two-dimensional
environment.

(c) Algorithm 1: the spatial allocation reached by
the robots corresponds to a lower locational cost,
as can be seen in Fig. 6.

Fig. 5. Comparison of the final allocation of 6 small-scale differential drive robots obtained using three different coverage control algorithms on the same
curve. The Voronoi cells (black thin lines), together with their centroids (gray dots), are superimposed on the three plots.

Algorithm 1 Constrained Coverage Control
Require: ε > 0, γ > 0

1: initialize k = 0
2: initialize p(k)

i to Robot i’s initial position
3: repeat
4: measure p(k)

j , j ∈ Ni
5: compute Voronoi cell Vi
6: deform curve to be orthogonal to the boundary of Vi
7: calculate p(k+1)

i and d(k) . (16), (17), (19)
8: execute ui = γ

Ä
p

(k+1)
i − p(k)

i

ä
9: k ← k + 1

10: until ‖d(k)‖ < ε

IV. EXPERIMENTS

Algorithm 1 is implemented on a team of 6 differential
drive robots in the Robotarium, a remotely-accessible swarm-
robotics testbed [25]. The team has to cover a 2.8m×2m
rectangular area while being constrained to move on a curve,
projected onto the testbed using an overhead projector (see
Fig. 5). The robots act as generators for the Voronoi partition,
with the black lines depicting the cell boundaries and the
gray dots their centroids: the closer the robots are to their
Voronoi cell centroid, the smaller the cost. In Fig. 5a the
curve on which the robots move is depicted in red, whereas
in Figs. 5b and 5c, it is painted using a different color for
each Voronoi cell on the (one-dimensional) curve.

The proposed algorithm is compared to two other strate-
gies for constrained coverage, i. e., projected gradient and
one-dimensional coverage. Fig. 5a depicts the final allocation
attained by projecting the negative gradient in (2) onto the
curve. This highlights the issue brought up in Sec. II, which
causes the robots to stop at an unfavorable spatial allocation
given that the gradients are perpendicular to the curve. As
an alternative, the curve itself is considered as the domain to
be covered in Fig. 5b. Although the resulting optimization
problem is convex, as discussed before, no information about
the two-dimensional environment is used to optimize the
locations of the robots. Thus, the performance in the two-
dimensional environment is heavily influenced by the curve.

Fig. 6. Evolution of the cost in (1) when executing projected gradient de-
scent, one-dimensional coverage and the proposed approach in Algorithm 1.

Finally, Fig. 5c depicts the configuration achieved by running
Algorithm 1. As can be seen, the robots end up closer to
the Voronoi centroids than in the other two strategies, thus
attaining a smaller value of the cost, as shown in Fig. 6. Only
the unconstrained case, in which the robots are allowed fo
move freely, outperforms Algorithm 1.

Although, in general, the results depend on the particular
choice of the curve C and on its position in the domain
D, both projected gradient descent and one-dimensional
coverage suffer from the aforementioned problems, which
make them undesirable for real applications.

V. CONCLUSIONS
In this paper, we presented a solution to the constrained

coverage control problem. A team of robots was tasked with
covering a two-dimensional domain, while being constrained
to move along a curve. We showed that a direct projection of
the unconstrained coverage algorithm can result in poor spa-
tial allocations of the robots. For this reason, a modification
to the unconstrained locational cost was proposed to take into
account the constraint introduced by the curve on which the
robots move. We developed a convex relaxation to efficiently,
even though approximately, solve the constrained coverage
problem. The decentralized algorithm was implemented on
a team of ground mobile robots, showing that the proposed
approach outperforms projected gradient descent and one-
dimensional coverage control.
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