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Abstract— This paper presents a coverage control algorithm
for teams of quadcopters with downward facing visual sensors
that prevents the appearance of coverage holes in-between the
monitored areas while maximizing the coverage quality as much
as possible. We derive necessary and sufficient conditions for
preventing the appearance of holes in-between the fields of
views among trios of robots. Because this condition can be
expressed as logically combined constraints, control nonsmooth
barrier functions are implemented to enforce it. An algorithm
which extends control nonsmooth barrier functions to hybrid
systems is implemented to manage the switching among barrier
functions caused by the changes of the robots composing trio.
The performance and validity of the proposed algorithm are
evaluated in simulation as well as on a team of quadcopters.

I. INTRODUCTION

Visual sensor networks have been used in urban areas and
natural environments [1], [2] with the intention of gathering
information about events such as human activities [3], traffic
flows [4], terrain data [5], and natural phenomena [6]. Aside
from systems that employ fixed or directionally controllable
cameras [7], [8], the use of aerial robot teams with visual
sensors is rapidly emerging within environmental monitoring
applications [9], [10]. However, when a team of aerial robots
is required to monitor broad areas of interest or visually
track targets [11], coverage holes may appear in-between
the fields of view (FOVs) of the different robots. This can
result in the team potentially overlooking important events—
an undesirable operational feature of the system.

Cooperative environmental monitoring with multi-robot
teams can be considered in the context of the coverage
problem [12], [13], [14], [15], [16], which grants an optimal
deployment of a group of mobile sensors over a domain in a
distributed fashion. Several criteria can be taken into account
when evaluating the coverage performance of the team, and
the elimination of coverage holes constitutes an important
aspect in the development of some approaches concerning
coverage of areas over uniform importance densities [17],
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[18]. Regarding coverage control with visual sensor networks
[19], [20], [21], [22], the quality of monitoring is often
evaluated with respect to the spatial sensing quality of the
visual sensor and the importance of the covered area.

In this paper, we consider a visual coverage control
strategy which prevents the appearance of unmonitored areas
in-between the FOVs of neighboring quadcopters—namely
coverage holes—while maximizes the coverage quality as
much as possible. While the elimination of coverage holes
is not discussed in visual coverage control [21], [22], an
algorithm reducing coverage holes in mobile sensors is
presented in [17], which however does not guarantee the
elimination of holes. In the author’s previous work [23],
this problem was addressed by incorporating control barrier
functions (CBFs) to a visual coverage control algorithm to
ensure coverage holes are not formed in-between monitored
areas. However, the CBFs implemented in [23] only consider
sufficient conditions for the formation of holes, hence ren-
dering an excessively conservative controller. Furthermore,
the CBFs in the previous approach cannot manage changes
regarding which quadcopters should prevent the formation of
a hole among them, which resulted in the team being forced
to keep the graph generated based on the initial positions of
the robots. Therefore, as the number of quadcopters in the
team increases, the movement of the quadcopters executing
the coverage algorithm in [23] becomes overly restrictive,
which in turn significantly deteriorates the coverage quality.

This paper addresses these two issues: we eliminate the
excessive conservativeness of the CBFs in [23] (while main-
taining the prevention of holes) and allow the graph related to
the elimination of holes among quadcopters to be dynamic.
To this end, we derive necessary and sufficient conditions to
not make any holes among any three agents with overlapping
FOV areas. Because this condition entails Boolean logic,
the proposed method utilizes control nonsmooth barrier
functions (CNBFs), which support Boolean composition of
CBFs. Then, we extend these newly designed CNBFs to large
teams of quadcopters, where the Delaunay graph associated
with the power diagram [24] (a weighted Voronoi diagram
characterized by the radii of the agents’ FOV) changes over
time. To address the jumps in the values of the CNBFs caused
by the switchings, the proposed algorithm extends the newly
designed CNBFs to hybrid systems.

The paper is organized as follows. Section II introduces the
problem formulation. The CNBF that prevents the appear-
ance of holes between neighboring quadcopters is proposed
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Image Plane

Fig. 1. Proposed scenario. The mission space Q on the environment E
is monitored by a team of quadcopters. Quadcopter i has a circular field
of view Fi, which depends on its position pi and focal length λi. The
crosshatched area in-between the quadcopters’ fields of view shows a hole.

in Section III, under the assumption of a static graph. Section
IV reconsiders the proposed scenario as a hybrid system,
and extends the result in Section III into large numbers of
agents with the switching of the graph. The performance
of the proposed algorithm is evaluated in simulation and
experiments in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

In this paper, we consider the scenario illustrated in Fig. 1,
where n quadcopters, labeled through the index set N =
{1, · · · , n}, equipped with cameras are distributed over 3-D
Euclidean space to monitor a planar region, which is denoted
as the mission space Q. The mission space is a closed and
bounded convex subspace of the environment E . A density
function, φ : E → R+ := [0,∞), encodes the importance
of each point on E so that, the higher the importance, the
higher the value of φ in Q, with φ(q) = 0, q ∈ E\Q.

The world coordinate frame, Σw, is arranged so that its
XwYw-plane is coplanar with E where the standard basis of
Σw is described as {ex, ey, ez}. Then, the environment is
described as E = {q ∈ R3 | eTz q = 0}, and the quadcopters
are confined in the half space {q ∈ R3 | eTz q > 0}.

Let Σi be the coordinate frame of Quadcopter i ∈ N ,
located at pi = [xi, yi, zi]

T with respect to Σw, and its
attitude is fixed to coincide with that of Σw regardless of
Quadcopter i’s attitude. We assume that each quadcopter
mounts a visual sensor with a gimbal which keeps its image
plane always parallel to the XiYi-plane and Zi aligned with
the optical axis. If we utilize a perspective projection model
[25] to express the image projection, the origin of Σi is
located at a distance equal to the focal length, λi, above
the image plane. In this paper, the image planes of all
quadcopters are assumed to be circular with radius r.

The state of Quadcopter i is defined as pi = [pTi , λi]
T ,

where focal length λi decides the zoom level of its visual
sensor. We suppose that the motion of the Quadcopter i ∈ N
can be described according to single integrator dynamics,

ṗi(t) = ui(t), pi(t0) = pi0, t0 ∈ R, t ∈ R>t0 (1)

which can be converted to reflect the quadcopter’s dynamics,
e.g. as in [26]. Then, Quadcopter i can monitor the part of
the environment E in its FOV

Fi =

{
q ∈ E

∣∣∣∣ ‖q − [xi, yi, 0]T ‖ ≤ r zi
λi

}
.

Fig. 2. Power diagram induced by 9 agents, depicted with black lines. The
FOV of each agent and the graph G are illustrated by the green circles and
the red lines, respectively. The vertices of the power diagram in-between
agents, shown in blue dots, are generated by groups of three agents. On
the left, the boundary of

⋃n
i=1 Fi has a dent with a vertex generated by 3

agents, but this does not represent a hole according to Definition 1.

The quality of surveillance of a point q ∈ Fi can be
modeled using the results from [19],

f(pi, q) =

√
λ2i + r2√

λ2i + r2 − λi

(
zi

‖q − pi‖
− λi√

λ2i + r2

)

×

(
λi√
λ2i + r2

)κ
exp

(
− (‖q − pi‖ −R)2

2σ2

)
,

(2)

where κ, σ,R > 0 model the characteristics of the visual
sensor. If q ∈ Q is not in Fi, then we set f(pi, q) = 0.

With the sensing performance function (2), the quality of
coverage performed by the team of quadcopters, with their
combined state denoted as p = [pT1 , · · · ,pTn ]T , as

H(p) =

∫
Q

max
i∈N

f(pi, q)φ(q)dq, (3)

which is proposed as HC in the author’s previous work [23].
Then, the nominal control input to maximize the coverage
quality can be calculated in a distributed fashion as

ui,nom = α
∂H(p)T

∂pi
, i ∈ N , α ∈ R+. (4)

We assume that each quadcopter is able to send its state to
the neighboring agents, being the inter-agent communication
modeled by the graphs GF (t) and GP(t). First, let GF (t)
denote the graph which has an edge between i, j ∈ N if
Quadcopters i and j have overlapping FOVs, i.e. Fi∩Fj 6= ∅.
Second, GP(t) is the graph determined by the power diagram
[24], characterized by the weighted distance

dP(pi, q) = ‖[qx, qy]T − [xi, yi]
T ‖2 −∆2

i , (5)

where ∆i = rzi/λi is the radius of Fi. Then, the commu-
nication graph is given by G(t) = GF (t) ∩ GP(t), which
preserves the edges of power diagram only between those
neighbors whose FOVs overlap. We denote Quadcopter i’s
neighbors in graph G(t) as Ni(t). An example of a power
diagram and associated G(t) is depicted in Fig. 2, where a
boundary of power diagram between Agents i, j connected
by an edge of G(t) is composed of the line passing through
two intersection points of their FOVs.

The goal of this paper is to present the algorithm which
prevents the formation of unsurveilled areas among the
quadcopter’s FOVs {F1, · · · ,Fn} while minimally changing
the nominal input ui,nom in (4). Similar to the disk-covering
problem [27], this paper prevents the appearance of holes by
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Fig. 3. Three cases of FOV deployments. (a) shows a hole in the sense of
Def. 1, where vijk lies outside of all three FOVs. (b) and (c) do not have a
hole, but vijk exists outside of FOVs in (c). This implies that the CBF in
(7) restricts the configuration in (c) just like (a), even if (c) does not contain
any holes. 4IJK is depicted as a purple triangle in each subfigure.

including Voronoi vertices, which lie in-between FOVs of
teams, in FOVs of quadcopters. Considering that all Voronoi
vertices among teams’ FOVs are formed by three agents,
as shown in Fig. 2, except for degenerate Voronoi diagrams
[28], we can divide the problem into triangular subgraphs of
G(t). Note that, in practice, degenerate Voronoi diagrams do
not cause severe problems since they can be separated into
triangulations.

From the above observation, in Section III, we restrict our
attention to the unsurveilled areas that may arise between any
three agents determined by a triangular subgraph of G(t), as-
suming G(t) static. The derived condition for preventing the
appearance of holes is described as the CNBF, which allows
us to confine agents within the set determined by logically
combined constraints. Then, the newly designed CNBF is
extended to large teams where there appear switching in the
CNBFs as a consequence of changes in the graph.

III. NO-HOLE COVERAGE WITH 3 AGENTS

In this section, we assume n = 3 to design the CNBF
for preventing formation of holes, neglecting discontinuities
in the constraints caused by the changes on the graph G(t).
The proposed method will be extended to larger teams, n >
3, with (potentially) changing graphs G(t) in Section IV.
Hereafter, we denote the point I = [xi, yi, 0] as a horizontal
position of Quadcopter i projected on the environment E .

First, we formally define the concept of a hole as consid-
ered throughout the paper.

Definition 1: Let all pairs {i, j, k} have an edge deter-
mined by the graph G. Then, a closed set E ⊂ Q is said to
be a hole, if and only if it satisfies the conditions

(∂E ∩ ∂Q = ∅) ∧ (Int(E) ∩ Fi = ∅, ∀i ∈ N )

∧ (E ⊂ 4IJK),
(6)

where ∂E and ∂Q denote the boundaries of E and Q;
Int(E), the interior of E; and 4IJK, the triangle with
vertices I , J , and K

Figure 3(a) shows a hole as defined in Def. 1 where the
radical center vijk = [vxijk, v

y
ijk]T—a vertex of the cell of

the power diagram—is the intersection of three radical axes
Lij , Ljk, and Lki. Without loss of generality, we make the
following assumption.

Assumption 1: No pair in {∂Fi, ∂Fj , ∂Fk} contains sens-
ing regions that are concentric. Also, not two axes among
{Lij , Ljk, Lki} are parallel.
Assumption 1 guarantees the radical axes {Lij , Ljk, Lki}
exist and intersect at a single point, and 4IJK does not
become a degenerate triangle.

We want to ensure that no hole appears among teams’
FOVs during the coverage operation if the initial deployment
of quadcopters does not present any holes. To this end, the
authors’ previous work [23] confined the state of Quadcopter
i in the superlevel set Ci,F = {pi ∈ R4 | hi,F > 0} of a
function hi,F , called a CBF [29],

hi,F =

(
r
zi
λi

)2

−
(

(vxijk − xi)2 + (vyijk − yi)
2
)
, (7)

where (7) is a slightly modified version of [23, Equation 24].
Ci,F is interpreted as the set in which vijk ∈ Fi is satisfied
as illustrated in Fig. 3(b), and [23] proved that hi,F > 0 is
the sufficient condition of not making a hole between Agents
i, j, and k. However, as depicted in Fig. 3(c), the condition
hi,F > 0 is so conservative that it affects certain movements
between quadcopters, even if such movements do not incur
the appearance of holes.

In order to relax this condition, let us consider the relation-
ship between holes and4IJK. From the difference between
Fig. 3(a) and (c), where vijk is outside of Fi in both cases but
a hole appears only in (a), the condition vijk ∈ 4IJK seems
to play an important role. In other words, to prevent the
appearance of holes, Quadcopter i needs to satisfy vijk ∈ Fi
only when vijk ∈ 4IJK holds. This can be written as

¬ (vijk ∈ 4IJK) ∨ (vijk ∈ Fi) . (8)

The following Theorem formalizes the relationship be-
tween (8) and the existence of a hole.

Theorem 1: Let us consider Agents i, j, and k, where each
agent’s sensing region intersects with that of the other two
agents. Then, there is no hole in-between the three agents if
and only if the condition (8) is satisfied.

Proof: First, we prove the necessary condition by
examining its contraposition

(vijk ∈ 4IJK) ∧ (vijk /∈ Fi)⇒ E 6= ∅. (9)

Given that each circle intersects the two other circles, each
side of the triangle is contained in the set (Fi ∪ Fj ∪ Fk).
This means that, if the triangle does not contain a hole (E =
∅), then 4IJK ⊂ (Fi ∪ Fj ∪ Fk) always holds. Based on
the fact there are only two possibilities for the location of
vijk: (i) vijk lies on or inside all three circles Fi ∩Fj ∩Fk;
or (ii) vijk lies outside of three circles Fi ∪ Fj ∪ Fk [30],
the left side of the proposition (9) holds only if a hole exists.
This proves the proposition (9).

Second, we prove the sufficient condition

¬ (vijk ∈ 4IJK) ∨ (vijk ∈ Fi)⇒ E = ∅. (10)

In [23, Lemma 2], the statement (vijk ∈ Fi)⇒ E = ∅ was
proved. Therefore, we only show that

¬ (vijk ∈ 4IJK)⇒ E = ∅. (11)



If we consider the case of E 6= ∅, Fi ∩ Fj ∩ Fk = ∅ is
satisfied. Because the location of vijk is limited to case (i)
or (ii) as stated in the proof of the necessary condition, the
possible location of vijk under the condition of E 6= ∅ is only
(ii) outside of all three circles Fi∪Fj∪Fk. Considering this
with the characteristics of vijk as the power center, E 6= ∅ ⇒
vijk ∈ E ⊂ 4IJK is satisfied. This is the contraposition of
the statement (11), thus a sufficient condition is proved.

The statement vijk ∈ 4IJK can be expressed as

(hIJK > 0) ∧ (hJKI > 0) ∧ (hKIJ > 0), (12)

where

hIJK =
(
eTz

(−→
IJ ×

−−−→
Ivijk

))/(
eTz

(−→
IJ ×

−→
IK
))

> 0

(13)
is a candidate CBF which takes a positive value when vijk
and K are in the same half-plane divided by line IJ . Note
that the denominator of (13) is not 0 if Assumption 1 is
satisfied. Combining hi,F with (12), (8) can be rewritten as

¬ ((hIJK > 0) ∧ (hJKI > 0) ∧ (hKIJ > 0)) ∨ (hi,F > 0).
(14)

To prevent a hole appearance between FOVs of quad-
copters, the state of Quadcopter i ∈ N must be confined in
the set determined by (14), which is encoded by the Boolean
composition of CBFs. The results of [31] reveal that a full
system of Boolean logic with ∧,∨, and ¬ can be formed as

h1 ∧ h2 := min{h1, h2}, h1 ∨ h2 := max{h1, h2},
¬h1 := −h1.

(15)

Therefore, (14) can be expressed as

hi = max{−hIJK ,−hJKI ,−hKIJ , hi,F} > 0. (16)

The CNBF (16) describes sufficient and necessary con-
ditions (8) for preventing the appearance of holes between
three neighboring agents. Hence, (16) successfully eliminates
the conservativeness in the CBF in [23, Equation 24]. In
next section, we introduce the tools which keep the state of
Quadcopter i in the set (16) when the graph changes.

IV. NO-HOLE COVERAGE FOR LARGE TEAMS

In this section, we consider the control algorithm which
prevents the appearance of holes among FOVs of teams with
large numbers of quadcopters. As the number of quadcopters
increases, it is more likely for G(t) to be dynamic. Accord-
ingly, the CNBF (16), which Quadcopter i needs to evaluate
in each triangular subgraph, may become discontinuous. This
requires introducing tools that deal with hybrid systems [32].

First, let us introduce the following two definitions from
[32], which are required to redefine the problem we consider.

Definition 2: [32, Def. 1] A sequence {τk}∞k=1 is a switch-
ing sequence for (1) if and only if it is strictly increasing,
unbounded, and τ1 = t0. With respect to {τk}∞k=1, let

Kt1 = inf

{
K ∈ N | [t0, t1] ⊂

K⋃
k=1

[τk, τk+1)

}
. (17)

Definition 3: [32, Def. 2] A set D ⊂ Rn×R is hybrid for-
ward invariant with respect to (1) and a switching sequence
{τk}∞k=1 for (1) if and only if for every Carathéodry solution
starting from x0 at t0,

(x(τk), τk) ∈ D,∀k ≤ Kt1 ⇒ (x(t), t) ∈ D,∀t ∈ [t0, t1].

Along the lines of the aforementioned definitions, we first
model the changes in the graph and constraints. We assume
that the set of the triangular subgraph Ti(t) of the graph
G(t), which contains Quadcopter i as its vertex, remains fixed
over intervals indicated by a switching sequence {τk}∞k=1.
Def. 3 expresses the behavior of the system pursuing in this
paper. In the proposed scenario, it implies if the changes of
the graph G(t) make no holes instantaneously in-between
Ti(t),∀i ∈ N , no holes appear among FOVs of teams.
Note that the rigorous treatment of hybrid systems requires
theories introduced in [33], but in this paper we omit to
introduce those theories, because those operations are not
required in the implementation of the proposed algorithm.

Then, the CNBF representing the constraint that Quad-
copter i should not make a hole in-between each triangular
subgraph mi ∈ Ti(t) on the k-th interval is written as

hki,mi(pi,pj ,pk) = max
`
{hkmi,`},

` = 1, · · · , 4,mi ∈ Ti(τk),
(18)

by following (7), (12), and (16). Here, we define hkmi,`, (` =
1, · · · , 4) for each of these triangular subgraph mi ∈ Ti(τk),
where they correspond to −hIJK ,−hJKI ,−hKIJ , and hi,F
in order when the vertices of mi is i, j, and k for simplicity.
By combining hki,mi ,∀mi ∈ Ti(τk) together, we obtain

hki (pi,pl∈Ni) =

|Ti(τk)|∧
mi=1

hki,mi , (19)

which encapsulates the constraint that Quadcopter i must
prevent the formation of holes in-between all neighboring
agents l ∈ Ni. (19) can be rewritten, by using (15), as

hki (pi,pl∈Ni) = min
mi
{hki,mi(pi,pj ,pk)}. (20)

Hence, the goal of this paper can be translated as the
proposal of algorithm which makes the set

Ci = {(pi, t) ∈ R4 × R≥t0 | hi(pi,pl∈Ni , t) ≥ 0} (21)

hybrid forward invariance, where

hi(pi,pl∈Ni , t) = hki (pi,pl∈Ni),

∀k ∈ N,∀t ∈ [τk, τk+1),∀pi ∈ R4
(22)

for Quadcopter i ∈ N . (22) takes the similar form with a
candidate control hybrid nonsmooth barrier function in [32].
However, (22) has a nested structure of logic composition.
In other words, the max operator in (18) is nested by the
min operator (20). Therefore, strictly speaking, in order to
ensure hybrid forward invariance of the set Ci, we need
an extension results of [31], [32]. In this paper, we focus
on the proposal of algorithm which prevents the hole’s



appearance and confirm its effectiveness through simulations
and experiments.

The hybrid forward invariance of the set Ci can be
achieved by guaranteeing

ḣi(pi,pl∈Ni , t) ≥ −α(hi(pi,pl∈Ni , t)), a.e.[t0, t1] 3 t,

for every Carathéodry solution, for some locally Lipschtz
extended class-K function α : R → R [32]. However, the
nonsmoothness exists in (18) and (20) prohibits calculating
ḣi via the usual chain rule. To address this issue, we
introduce the almost-active set of functions,

Iε,i(x
′, t′) = {i | ‖hi(x′, t′)− h(x′, t′)‖ ≤ ε}, (23)

and the almost-active gradient

∂εh(x′, t′) = co
⋃

i∈Iε,i(x′,t′)

∂hi(x
′, t′), (24)

at (x′, t′) ∈ Rn × R≥0 [32].
For a CNBF composed by continuously differentiable

functions, [31] shows that utilizing the almost-active gradient
as a constraint in a quadratic programming (QP) generates
the control input satisfying constraints, with assuming the
resulting controller is measurable and locally bounded. The
work in [32], which considers switching constraints in hybrid
systems, also takes this approach with putting the gradients
of the component functions in constraints, while eliminating
the convex-hull operation in (24). Since the individual gradi-
ents of the component function in (7) and (12) at each point
in time is smooth under Assumption 1 and they are combined
by operators in (15), we also follow the approach proposed
in [31] to make the set Ci hybrid forward invariance.

Given ui,nom in (4), the QP minimally modifying ui,nom
to prevent the appearance of holes on each interval can be
described as

u∗i = arg min
ui∈R4

(ui − ui,nom)TW (ui − ui,nom)

s.t.
∂hkmi,`(pi,pj∈Ni)

∂pi

T

ui ≥ −γhki (pi,pj∈Ni)
3,

∀mi ∈ Ikε,mi(pi,pj∈Ni), ∀` ∈ I
k
ε,`(pi,pj∈Ni),

(25)

with W = diag(1, 1, 1, wλ) under the following assumption.
Assumption 2: From the perspective of Quadcopter i, the

neighboring Quadcopters j ∈ Ni do not move.
Here, wλ is introduced to adjust the unit difference be-

tween pi and λi. Assumption 2 implies Quadcopter i need

not calculate
∂hkmi,`
∂pj

, j ∈ Ni, when solving the QP in a
distributed manner. Although in reality Quadcopters j ∈ Ni
are indeed moving, they are also preventing to make a hole
between them and Quadcopter i, and their speed is low. Thus,
we can assume Quadcopters j ∈ Ni are not moving with
respect to i. The entire process is shown in Alg. 1.

Algorithm 1 achieves the hybrid forward invariance of the
set Ci in the sense of Def. 3, which does not consider holes
suddenly generated by the changes in the graph G(t). How-
ever, in the proposed scenario, there are some cases where
switches in the graph may cause the sudden appearance of

Algorithm 1 Coverage maintenance algorithm
INPUT: Nominal controller: ui,nom

The set of current triangular subgraph for i: Ti(τk)
OUTPUT: Coverage maintenance controller: u∗i
hki,mi(pi,pj ,pk)← max`{hkmi,`},

` = 1, · · · , 4, ∀mi ∈ Ti(τk)
hki (pi,pj∈Ni)← minmi{hki,mi(pi,pj ,pk)}
Ikε,mi ← ∅, I

k
ε,` ← ∅

for mi = 1 : |Ti(τk)| do
if ‖hki,mi − h

k
i ‖ ≤ ε then

Ikε,mi(pi,pj∈Ni) ∪ {mi}
for ` = 1 : 4 do

if ‖hkmi,` − h
k
i,mi
‖ ≤ ε then

Ikε,`(pi,pj∈Ni) ∪ {`}
u∗i ← arg min

ui

(ui − ui,nom)TW (ui − ui,nom)

s.t.
∂hkmi,`

(pi,pj∈Ni )

∂pi

T

ui ≥ −γhki (pi,pj∈Ni)
3

∀mi ∈ Ikε,mi(pi,pj∈Ni), ∀` ∈ Ikε,`(pi,pj∈Ni)

a hole. As shown in the left part of Fig. 2, the boundary
of
⋃n
i=1 Fi can have a dent. If one of the quadcopters

approaches and attaches itself to this dent, the graph G(t)
may change and this dent may turn into a hole. Note that this
hole’s appearance does not break hybrid forward invariance
of the set Ci in the sense of Def. 3. In addition, Alg. 1
eliminates this suddenly appeared hole in most cases, due
to the robustness of the forward invariance of Ci. This
phenomenon is illustrated in Fig. 6 for k = 744 and will
further be explained in Section V.

V. SIMULATIONS AND EXPERIMENTS

The proposed algorithm is implemented in simulation and
experiment to verify that it renders the set Ci hybrid forward
invariant. For both the simulation and experiment, the density
function is shown as contour maps in snapshots.

First, Alg. 1 is compared with the nominal input in (4) (i.e.
without hole prevention) and with the CBF from [23], in a
simulation with 9 quadcopters. The size of mission space is
55 × 55 m2 as shown in Fig. 4. The parameters are set as
κ = 4, σ = 3, R = 11, wλ = 3 × 106. The snapshots of
the simulations for three methods are presented in Fig. 4.
Figure 4(a) shows the transient state of quadcopters only
with ui,nom, and a hole appears in-between FOVs, which
is undesirable. Fig. 4(b) and 4(c) show the final state of
ui,nom with the CBF from [23] and Alg. 1, respectively.
Both simulations do not exhibit holes. However, the CBF
in [23] cannot change its graph, depicted in the red lines,
from its initial state. This restricts quadcopters movement
excessively. Figure 5 also supports this observation, where
ui,nom modified by CBF in [23] cannot reach the coverage
performance of Alg. 1 or ui,nom. hki (pi,pj∈Ni),∀i ∈ N of
Alg. 1 is drawn in Fig. 6, where it takes the positive value
except for k = 744. As explained in the end of Section IV,
this is caused by the sudden appearance of a hole, and does
not violate the hybrid forward invariance of the set.



(a) Transient state using the nominal input in (4). (b) Final state with the CBF from [23]. (c) Final state executing the proposed algorithm.

Fig. 4. Snapshots of the simulations, where graph G, dynamic in (a) and (c) and static in (b), is depicted in red. In transient state, a hole arises in (a)
towards the center of the field, which takes time to eliminate. The methods in (b) and (c) prevent the hole’s appearance during operation, but the static
graph in (b) excessively restricts the quadcopters’ movements. As a result, the FOVs in (b) are bigger and present larger overlaps than those in (c).

0 500 1000 1500 2000 2500 3000
0.5

1

1.5

2

2.5

3

3.5
10

5

Fig. 5. Evolution of the cost function (3). Alg. 1 achieves a coverage
quality as high as the nominal input, while [23] attains a suboptimal value.
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Fig. 6. Evolution of hi(pi,pj∈Ni ), ∀i ∈ N in (22). Alg. 1 remains hi
in the positive value except for step number k = 744, at which a newly
appeared triangular subgraph of G creates a hole as explained in the end of
Section IV. Note that this instantaneously appeared hole does not violate
the hybrid forward invariance of the set Ci in the sense of Def. 3.

Second, the proposed algorithm was implemented on a
team of 4 quadcopters PARROT BEBOP 2. The size of ex-
perimental field is 4.2×3.0 m2. We set their FOVs virtually.
The parameters are set as κ = 4, σ = 0.25, R = 2.2, wλ =
6× 106. As shown in Fig. 7, teams starting from the lower-
left corner reach high density areas. hi(pi,pj∈Ni),∀i ∈
N during the experiment are depicted in Fig. 8, where it
can be observed that they remain positive throughout the
experiment. Therefore, the proposed algorithm successfully
modifies the nominal input in a minimally invasive way
ensuring that no holes appear in-between the team’s FOVs.

VI. CONCLUSION

This paper presented a visual coverage algorithm which
prevents the formation of unsurveyed areas in-between fields

① ②

③

④

(a)

① ②
③

④

(b)

Fig. 7. Snapshots of the experiment. (a): Initial condition. (b): Final
condition. The density function overlaid on the floor takes higher value
on the upper-right corner. FOVs of teams are drawn in the green, blue, red,
and yellow cones. The indices and the graph G are shown in white.
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Fig. 8. hi(pi,pj∈Ni ),∀i ∈ N during the experiment. All value remains
in the positive value, hence the appearance of hole is successfully prevented
by Alg. 1. A spike at t = 10 s is caused by the change of the graph.

of views of robots. Necessary and sufficient conditions for
preventing the appearance of holes among trios of robots
were derived. A new control nonsmooth barrier function
was incorporated into the proposed algorithm to extend the
results to teams composed of larger numbers of robots,
where the topology is dynamic. The effectiveness of the
proposed algorithm was demonstrated through simulation
and experiment.
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