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Abstract— This paper presents a coverage control strategy
for teams of quadcopters that ensures that no area is left
unsurveyed in between the fields of view of the visual sensors
mounted on the quadcopters. We present a locational cost
that quantifies the team’s coverage performance according to
the sensors’ performance function. Moreover, the cost function
penalizes overlaps between the fields of view of the different
sensors, with the objective of increasing the area covered by the
team. A distributed control law is derived for the quadcopters
so that they adjust their position and zoom according to the
direction of ascent of the cost. Control barrier functions are
implemented to ensure that, while executing the gradient ascent
control law, no holes appear in between the fields of view
of neighboring robots. The performance of the algorithm is
evaluated in simulated experiments.

I. INTRODUCTION

An increasing number of visual sensors have been intro-
duced in urban areas and natural environments [1] with the
goal of collecting information about events such as natural
phenomena [2], security concerns [3] and urban traffic [4].
Although, for some applications, a stationary network of
visual sensors may be sufficient to obtain the necessary
information [5], [6], [7], [8], aerial robotic swarms represent
an adaptable solution for scenarios where the domain to be
monitored or the surveillance requirements may vary [9].

Coordinating a group of aerial robots to visually monitor
areas of interest can be considered in the context of the
coverage problem [10], [11], [12]. Coverage control deals
with how to distribute a collection of mobile sensors in a
domain such that the features of interest are appropriately
monitored by the team. The quality of the surveillance
over the objective area is often quantified according to the
performance function of the sensors [13], [14], [15]. For
multi-camera systems, the problem of visual coverage has
been explored both for stationary camera networks [16],
[17] and for cameras on teams of quadcopters [18], [19].
In these scenarios, aspects such as lens distortion [17] or
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camera resolution [18] are usually taken into account when
quantifying the coverage performance of the system.

In this paper, we present a visual coverage algorithm
for teams of quadcopters equipped with downward facing
cameras. Although the scenario is similar to [18], [19], we
propose a new locational cost that simultaneously serves
two purposes: (a) quantifying the performance of all the
cameras, taking into account their lens distortion as in [17];
and (b) reducing the overlap between fields of view of
the quadcopters, to expand the surveyed area as much as
possible. However, increasing the covered area may result in
the appearance of coverage holes, that is, unsurveyed areas
in between contiguous agents that significantly degrade the
coverage performance [15], [20], [21], [22]. To prevent this
unfavorable situation, the proposed algorithm incorporates
control barrier functions [23] among agents whose fields of
view form triangulations to ensure that no holes appear in
between covered areas.

The remainder of the paper is organized as follows: In
Section II, we formalize the problem statement. A new
locational cost that encodes the coverage performance of the
team and minimizes overlaps between the quadcopters’ fields
of view is introduced in Section III. A distributed control
strategy which allows the team to achieve a critical point of
the cost by performing an ascent flow is derived in Section
III-A. Section IV introduces a control barrier function that
ensures that the fields of view of neighboring agents in
the team stay connected. The performance of the proposed
method is evaluated in simulation in Section V. Section VI
concludes the paper.

II. PROBLEM STATEMENT
Consider the scenario illustrated in Fig. 1, where n quad-

copters, indexed by N = {1, · · · , n}, are distributed over the
3D Euclidean space with the objective of covering a planar
region, hereafter referred to as the mission space and denoted
as Q. The mission space is a closed and bounded convex
set within a planar environment, E . A density function,
φ : Q → R, can be used to encode the importance of
each point within the mission space such that, the higher
the importance, the higher the value of the density function.

Without loss of generality, the world coordinate frame,
Σw, is chosen to be right-handed, with the XYw-plane
coplanar to E . If we denote the standard basis of Σw as
{ex, ey, ez}, then the environment is

E = {q ∈ R3 | eTz q = 0},
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and the quadcopters are naturally restricted to move in the
half space {q ∈ R3 | eTz q > 0}.

In order to monitor the environment, each quadcopter is
equipped with a downward facing visual sensor. Let Σi be the
frame of reference of Quadcopter i, i ∈ N , located at pi =
[xi, yi, zi]

T with respect to Σw and with its standard basis
being parallel to the basis of the world frame while hovering,
i.e., Σi not rotated with respect to Σw. We assume that the
visual sensor is mounted on the quadcopter using a gimbal
such that its image plane is always parallel to the XYi-plane
and Zi is aligned with the optical axis. If we express the
image projection according to a perspective projection model
[24], then the origin of Σi is located at a distance equal to
the focal length, λi, above the image plane. In this paper,
the image plane of all agents is assumed to be circular with
radius r.

Each quadcopter can therefore monitor the portion of the
mission space Q in its field of view,

Fi =

{
q ∈ E

∣∣∣∣ ‖q − [xi, yi, 0]T ‖ ≤ r zi
λi

}
,

which depends on the position of the quadcopter, pi, and on
the zoom level of its visual sensor, determined by the focal
length, λi.

The objective of this paper is to achieve a spatial allocation
of the team and focal length for each agent such that the
combination of all the fields of view {F1, . . . ,Fn} results
in an optimal coverage of the mission space, Q. Let pi =
[pTi , λi]

T be the state of Quadcopter i. We assume that the
movement of the quadcopter can be controlled according to
single integrator dynamics,

ṗi = ui, (1)

which can be converted to reflect the quadcopter’s dynamics,
e.g. as in [25]. With this consideration, the state of the agents
can evolve to satisfy three different aspects of the coverage
objective: (a) the areas of higher importance in the mission
space need to be monitored closely by the quadcopters, (b)
the area covered by the quadcopters should expand as much
as possible over the mission space, while ensuring that (c)
no space in between fields of view of contiguous robots is
left unsurveyed. We encode requirements (a) and (b) through
a locational cost to be optimized by the agents, while (c) is
enforced through control barrier functions.

III. COVERAGE CONTROL
A natural way of characterizing the coverage performance

of a multi-robot team over a domain of interest, Q, is to
define a cost function that quantifies the team’s collective
performance as a function of the quadcopters’ states. The
quality of surveillance at a point q ∈ Q in the field of view
Fi can be quantified using the model in [17],

f(pi, q) = fpers(pi, q)fres(pi, q), (2)

with fpers(pi, q) characterizing the perspective quality,

fpers(pi, q) :=

√
λ2
i + r2√

λ2
i + r2 − λi

(
zi

‖q − pi‖
− λi√

λ2
i + r2

)
,

Image

Plane

Fig. 1. Proposed scenario. The teams of quadcopters monitor the mission
space Q. Agent i’s field of view Fi depends on Agent i’s position, pi, and
focal length, λi. The crosshatched area among the quadcopters’ field of
views represents a hole. By using control barrier functions, we will prevent
this unsurveyed area from emerging while maximizing the coverage cost.

and fres(pi, q) the loss of resolution,

fres(pi, q) :=

(
λi√
λ2
i + r2

)κ
exp

(
− (‖q − pi‖ −R)2

2σ2

)
.

Analogously to [17], the parameters κ, σ > 0 model the
spatial resolution variability of the sensor and R > 0
represents the desired range for the vision sensor. If a point
is not in the field of view of Quadcopter i, then

f(pi, q) = 0, q /∈ Fi.

Having defined the sensing performance function, the
quality of the coverage performed by the quadcopter team
can be characterized through the cost,

HC(p) =

∫
Q

max
i∈N

f(pi, q)φ(q)dq, (3)

with a higher value of the cost corresponding to a better
coverage of the domain. Here p = [pT1 , . . . ,p

T
n ]T is the

combined state of all the robots and the subscript C refers to
the fact that this cost quantifies the coverage quality. Equiv-
alently, if we define the region of dominance of Quadcopter
i according to the conic Voronoi diagram [17],

Vi(p) = {q ∈ Q ∩ Fi | f(pi, q) ≥ f(pj , q), j ∈ N}, (4)

the cost in (3) becomes,

HC(p) =
∑
i∈N

∫
Vi(p)

f(pi, q)φ(q)dq. (5)

However, characterizing the coverage performance as in
(5) implies that, at a point q ∈ Q where several fields of view
overlap, only the state of the quadcopter with the best sensing
performance at q contributes to the coverage objective. This
can be detrimental for the team since those quadcopters with
a suboptimal coverage of q could potentially cover alternative
areas of the mission space. Let us denote the area covered
by Quadcopter i where another quadcopter in the team has
a superior sensing performance as

V̄i(p) = {q ∈ Q ∩ Fi | f(pi, q) < f(pj , q), j ∈ N}.



Then, the performance loss caused by the area overlap can
be quantified as

HO(p) =
∑
i∈N

∫
V̄i(p)

f(pi, q)φ(q)dq. (6)

We are interested in minimizing the cost in (6) since it
characterizes the loss of performance caused by the overlaps
among the fields of view. Therefore, we can encode the
overall objective combining (6) with (5) as follows,

H(p) = HC(p)−HO(p), (7)

with a higher value of H corresponding to a better perfor-
mance of the team under the specified objectives.

A. Gradient Ascent

Having defined a locational cost that characterizes the
performance of the team, a natural way to maximize it is
to make the quadcopters follow a direction of ascent, that is,

ṗi =
∂H(p)

∂pi

T

, i ∈ N .

In order to compute the gradient of (7), let us first consider
the gradient of HC by applying Leibniz integral rule [26],

∂HC(p)

∂pi
=

∫
Vi

∂f(pi, q)

∂pi
φ(q)dq (8)

+

∫
∂Vi

f(pi, q)φ(q)nTij(q)
∂q

∂pi
dq (9)

+
∑
j∈Ni

∫
∂Vij

f(pj , q)φ(q)nTji(q)
∂q

∂pi
dq, (10)

where Ni are the neighbors of i with respect to the partition
in (4),

Ni = {j ∈ N | f(pi, q) = f(pj , q), q ∈ Q}, (11)

and ∂Vi and ∂Vij denote the whole boundary of Vi and those
parts of the boundary shared with Quadcopter j, respectively.
We have dropped the dependency of Vi and its boundaries
on p for notational convenience.

The term in (9) corresponds to a line integral whose
domain of integration, ∂Vi, can be composed of

1) boundaries resulting from the overlap of the fields of
view of Quadcopter i and other quadcopter’s, ∂Vij ;

2) segments along the boundary of the mission space,
where Vi ∩ ∂Q; and

3) arcs of circumference where Fi intersects with the
interior of the mission space without overlapping with
any other agent.

In 1), the terms integrated over ∂Vij cancel the corresponding
term in (10), given that

f(pi, q) = f(pj , q), q ∈ ∂Vij , (12)

and the normals are opposite to each other, nij(q) =
−nji(q). For case 2), the term ∂q/∂pi in the integrand is
zero, and thus vanishes along those segments. Finally, the
sensing performance f(pi, q) = 0 in the boundary of the
field of view, Fi, and, thus, the integrals corresponding to

case 3) also become zero. Therefore, the gradient of HC(pi)
is

∂HC(p)

∂pi
=

∫
Vi

∂f(pi, q)

∂pi
φ(q)dq.

The expression for the derivative of the sensing perfor-
mance function with respect to the state of Quadcopter i,
∂f(pi, q)/∂pi, is included in the Appendix.

A similar analysis follows for the gradient of HO,

∂HO(p)

∂pi
=

∫
V̄i

∂f(pi, q)

∂pi
φ(q)dq.

Therefore, the gradient of H,

∂H(p)

∂pi
=

∫
Vi

∂f(pi, q)

∂pi
φ(q)dq −

∫
V̄i

∂f(pi, q)

∂pi
φ(q)dq.

(13)
Letting Quadcopter i follow a direction of ascent estab-

lishes the following coverage theorem.
Theorem 1: Let Quadcopter i, with state pi = [pTi , λi]

T ,
evolve according to the control law ṗi = u, with

u =

∫
Vi

∂f(pi, q)

∂pi

T

φ(q)dq −
∫
V̄i

∂f(pi, q)

∂pi

T

φ(q)dq, (14)

then, as t → ∞, the quadcopter team will converge to a
critical point of the locational cost in (7).

Proof: Let us consider the candidate function

V (p) = U −H(p) > 0, (15)

with U =
∫
Q φ(q)dq a strict upper bound of the locational

cost, H(p), given that f(pi, q) ∈ [0, 1],∀i ∈ N . Then, the
total derivative of (15),

dV

dt
= −

∑
i∈N

∂H
∂pi

ṗi = −

∥∥∥∥∥∂H∂p T
∥∥∥∥∥

2

≤ 0. (16)

For (16) to be zero, we need ∂H/∂p = 0, which corresponds
to ṗi = 0. By LaSalle’s invariance principle, the team will
converge to the largest invariant set contained in the set that
satisfies ∂H/∂p = 0, i.e. the critical points of the cost (7).

IV. CONTROL BARRIER FUNCTIONS

Although the control input (14) allows the quadcopter
team to fulfill the two objectives stated in Section II, namely,
monitoring important areas with the appropriate resolution
and expanding the covered area as much as possible; we
need to enforce that no area is left unsurveyed in the middle
of monitored areas, as illustrated in Fig. 1. If such an area
appears, the fields of view surrounding it will prevent any
other member of the team from covering it. Thus, the chance
of monitoring a hole once it arises is very small.

In order to analyze the existence of coverage holes, we
need to characterize the neighborhood of each agent. Let
GF (p) denote the graph given by the conic Voronoi partition,
with neighborhoods given by (11), and GP(p) the power
diagram [27] characterized by the weighted distance,

dP(pi, q) = ‖[qx, qy]T − [xi, yi]
T ‖2 −∆2

i ,



where ∆i = rzi/λi is the radius of Fi. The graph G(p) =
GF ∩ GP preserves the edges of the power diagram only
between those neighbors whose fields of view overlap.
Analogously to other works in sensor networks which use
triangulations [28], [29], we concern ourselves with triangu-
lar subgraphs [30] of the graph G(p).

For the remainder of this section, we restrict our attention
to the coverage holes that may arise, locally, in between three
agents {i, j, k}, that belong to a triangular subgraph of G(p).

Definition 1: A closed set E ⊂ Q is said to be a hole, if
it satisfies the conditions

(∂E ∩ ∂Q = ∅) ∩ (Int(E) ∩ Fi = ∅, ∀i ∈ N ) (17)
∩ E ∈ Conv({[xi, yi], [xj , yj ], [xk, yk]}),

where ∂E and ∂Q denote the boundaries of E and Q;
Int(E), the interior of E; and Conv(·), the convex hull.

Fig. 2a illustrates a hole according to our definition. The
goal of this section is to ensure that, if the initial deployment
of the quadcopter team does not contain a hole, then no hole
will appear as a result of executing an ascent flow. Let us
denote as ui,nom the control law given by (14), then we are
interested in finding a control u∗i that remains as close as the
nominal input, ui,nom, while ensuring that no holes appear,
which can be done through a control barrier function (CBF)
[23]. This can be described as the Quadratic Program (QP):

u∗i = arg min
ui
‖ui − ui,nom‖2 (18)

s.t. ci,CBF (pi, ui) ≥ 0,

where ci,CBF (pi, ui) ≥ 0 defines the limitations on ui such
that no holes appear.

Before we investigate the expression for ci,CBF (pi, ui) ≥
0, a few concepts related to CBFs need to be introduced. Let
us define a closed set C ∈ Rn, the set of states that do not
incur holes. In addition, we assume that such a set can be
expressed as the superlevel set of a barrier function, h, i.e.
C = {x ∈ Rn | h(x) ≥ 0}, where h : Rn → R is a
continuously differentiable function.

Definition 2: ([23] Definition 5) Given the control affine
system

ẋ = f(x) + g(x)u, (19)

where f and g are locally Lipschitz, x ∈ Rn and u ∈ Rm,
together with the set C, then the function h is a Zeroing
Control Barrier Function (ZCBF) defined on a set D with
C ⊂ D ⊂ Rn, if there exists an extended class K function,
α, such that

sup
u∈U

[Lfh(x) + Lgh(x)u + α(h(x))] ≥ 0, ∀x ∈ D. (20)

Lfh(x) and Lgh(x) are the Lie derivatives of h(x) along
f(x) and g(x), respectively.

We can guarantee the forward invariance of the set C
through the following corollary.

Corollary 1: ([23] Corollary 2) Given a set C, if h is a
ZCBF on D, then any Lipschitz continuous controller u(x) :
D → U such that Lfh(x) +Lgh(x)u(x) +α(h(x)) ≥ 0 will
render the set C forward invariant.

Given that, in our problem, the quadcopter’s dynamics are
given by (1), f = 04×1 and g = I4, with 0n×m an n ×m
zero matrix and In the n×n identity matrix, if we use h3

ijk

as an extended class K function, the QP can be described as

u∗i = arg min
ui

(ui − ui,nom)TW (ui − ui,nom) (21)

s.t.
∂hijk(pi,pj ,pk)

∂pi

T

ui + h3
ijk(pi,pj ,pk) ≥ 0,

with W = diag(1, 1, 1, wλ) under the following assumption.
Assumption 1: From the perspective of Agent i, Agents j

and k in the triangulation do not move.
Here, wλ is introduced to adjust the unit difference between
the position pi and the focal length λi. Further, Assumption
1 implies that there is no need to calculate ∂hijk

∂pj
or ∂hijk

∂pk
in

order to solve the QP (21) in a distributed manner. Although
in reality Agents j and k are indeed moving, they are also
preventing to make a hole between them and Agent i, and
their speed is low. Therefore, we can assume Agents j, k are
not moving with respect to Agent i in order to calculate the
CBF conditions.

Formulating a CBF that enforces holes do not appear
involves understanding the geometric relationships among
the fields of view of the agents. To this end, we will again
consider three agents {i, j, k}, which compose a triangular
subgraph of G(p). The power diagram’s boundary between
two agents is known as a radical axis. We denote the radical
axis of the sensing regions ∂Fi and ∂Fj as Lij given by

Aij(xi, xj)x+Bij(yi, yj)y + Cij(pi,pj) = 0, (22)

where Aij(xi, xj) := 2(xj − xi), Bij(yi, yj) := 2(yj − yi)
and Cij(pi,pj) := x2

i−x2
j+y2

i −y2
j +r

(
zj
λj
− zi

λi

)
. Without

loss of generality, we make the following assumption.
Assumption 2: No pair in {∂Fi, ∂Fj , ∂Fk} contain sens-

ing regions that are concentric. Also, not two axes among
{Lij , Ljk, Lki} are parallel.
Assumption 2 ensures that the radical axes {Lij , Ljk, Lki}
exist and are concurrent. The intersection among the three
radical axes, the radical center, is denoted as vijk and its
x, y coordinates are written as

vxijk =
BijCik − CijBik
AijBik −BijAik

, vyijk =
CijAik −AijCik
AijBik −BijAik

. (23)

For notational convenience, we have dropped the dependency
of vxijk and vyijk as well as of Aij , Bij , Cij on pi,pj ,pk.

Let us introduce a Lemma which shows the relationship
between a radical center vijk and the existence of a hole.

Lemma 1: Suppose that Assumption 2 holds and
∂Fi, ∂Fj , ∂Fk have two distinct intersection points for each
pair. Then, if there exists a robot l ∈ {i, j, k} which satisfies
vijk ∈ Fl, there is no hole.

Proof: From [31], there are exactly two possibilities
for the location of vijk: (1) vijk lies outside three circles
∂Fi, ∂Fj , ∂Fk; or (2) vijk lies on or inside all three circles
∂Fi, ∂Fj , ∂Fk. Therefore, under the assumptions made, the
statement is equivalent to ”if vijk exists on or inside of
all three circles ∂Fi, ∂Fj , ∂Fk, then there is no hole”. We



(a) (b) (c)

Fig. 2. Three cases of sensing regions deployments. (c) provides intuition
about the implemented CBF.

prove this statement by contraposition, namely ”if there
is a hole, vijk does not exist on or inside of all three
circles ∂Fi, ∂Fj , ∂Fk”. It is obvious that, if there is a hole,
Fi ∩ Fj ∩ Fk = ∅. Therefore, vijk /∈ (Fi ∩ Fj ∩ Fk). This
proves the statement.

From Lemma 1, we propose the following candidate ZCBF
for agent i in order to prevent the formation of holes in the
surveyed area,

hijk(pi,pj ,pk) =

(
r
zi
λi
−M

)2

−
(
V xijk

2 + V yijk
2
)
> 0,

(24)
where V xijk = vxijk − xi, V

y
ijk = vyijk − yi, and M > 0

determines how much overlap is ensured. The interpretation
of (24) is to keep vijk inside of the circle with radius(
r ziλi −M

)
as depicted in Fig. 2 (c). Since the robot i

has the neighbors information, it can calculate (24) in a
distributed way. The following lemma shows the effect of
the proposed ZCBF on a hole’s existence.

Lemma 2: Under Assumption 2, hijk > 0 holds only if
∂Fi, ∂Fj , ∂Fk have two distinct intersection points for each
pair and E = ∅ holds.

Proof: First, we consider the intersection points be-
tween robot i and j. It is well known that the power of P ∈
Lij with respect to ∂Fi and ∂Fj take the same value, and the
power of P with respect to ∂Fi is positive if P is outside of
∂Fi, negative if P is inside of ∂Fi and 0 if P ∈ ∂Fi. From
this property, if ∂Fi and ∂Fj do not have any intersection
point, then Lij ∩ Int(Fi) = ∅ and Lij ∩ Int(Fj) = ∅ hold.
From vijk ∈ Lij , if Lij ∩ Int(Fi) = ∅, then vijk never exists
in Fi, namely hijk ≤ 0. The same is true of agent i and
k. Next, we consider agent j and k. If ∂Fj and ∂Fk do
not have any intersection point, the similar analysis shows
that the power of P ∈ Ljk with respect to ∂Fj and ∂Fk
is always positive. Since the power of three circles at the
radical center vijk ∈ Ljk takes the same value, the power
of vijk with respect to ∂Fi is also positive. From this fact,
vijk exists outside of ∂Fi. Therefore, hijk > 0 holds only if
∂Fi, ∂Fj , ∂Fk have two distinct intersection points for each
pair. It is obvious from (24) that hijk > 0 holds only if
vijk exists inside of Fi. From above discussion and lemma
1, hijk > 0 holds only if ∂Fi, ∂Fj , ∂Fk have two distinct
intersection points for each pair and E = ∅ holds.

As the proposed ZCBF ensures that no holes are create,
we need to be confirm whether it satisfies Definition 2 and

TABLE I
DENSITY FUNCTION PARAMETERS

Parameter 1 2 3

Ki 3× 103 2.5× 103 6× 102

µi [0.6, 2.8]T [3,−0.8]T [−0.3, 4]T

Σi 20
[

1 0.3
0.3 1

]
12

[
1 −0.2
−0.2 1

]
8.5

[
1 0.3

0.3 1

]

it provides us the forward invariance property.
Theorem 2: Suppose that Assumption 2 and 0 < M <

rzi
λi

holds. Then, generically, the function hijk in (24) is a
valid ZCBF when ui ∈ R4.

Proof: If Lghijk(pi) 6= 04×1 holds, then there exists
ui ∈ R4, which satisfies that Lfh(x)+Lgh(x)u+α(h(x)) ≥
0 [32]. The derivative of hijk with respect to pi is given by

∂hijk
∂xi

= −2

(
V xijk

(
∂vxijk
∂xi

− 1

)
+ V yijk

∂vyijk
∂xi

)
∂hijk
∂yi

= −2

(
V xijk

∂vxijk
∂yi

+ V yijk

(
∂vyijk
∂yi

− 1

))
∂hijk
∂zi

= 2
r

λi

(
r
zi
λi
−M

)
− 2

(
V xijk

∂vxijk
∂zi

+ V yijk
∂vyijk
∂zi

)
∂hijk
∂λi

=−2
rzi
λ2
i

(
r
zi
λi
−M

)
−2

(
V xijk

∂vxijk
∂λi

+ V yijk
∂vyijk
∂λi

)
.

In general, ∂hijk/∂pi = 0 holds when
rzi
λi

= M. (25)

Then, if 0 < M < rzi
λi

holds, ∂hijk/∂pi = 0 never happens
except for potential, pathological and non-stationary points.
Fig. 2 (c) shows that rziλi = M only happens when too large
a margin M is chosen which is equivalent with Quadcopter
i’s sensing region. One can easily avoid the condition in (25)
by selecting M to be small enough. Thus, we can state that,
generically, under an appropriate choice of M , Lghijk(pi) 6=
04×1.

V. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated
through simulation, with a team of 4 quadcopters covering
a 12× 12 m2 area. The simulated agents are asked to cover
the mission space, Q, depicted in Fig. 4, with respect to the
following density function:

φ(q) = 10+

3∑
i=1

Ki exp

(
− (q − µi)TΣ−1

i (q − µi)
2

)
, (26)

with the parameters given as in Table I.
The control law in (14) is tested in the scenario with and

without the ZCBF in Section IV. The parameters for the
sensing performance function f(pi, q),∀i are κ = 4, R = 3
and σ = 0.3, and the parameter for the QP (21) is wλ = 105.

The evolution of the locational cost in (7) is presented in
Fig. 3. In both cases, the distributed gradient ascent algorithm
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Fig. 3. Comparison of the cost for the experiments in Fig. 4. The price
to pay for having a hole-free covered area when using the CBF approach
in (21) is slightly smaller than the cost in the final configuration. However,
executing the algorithm with the control barrier function ensures that a hole-
free area is covered by the quadcopter team at all times.

(a) Transient state while using the control law from (14) without the
CBF. A hole appears in between the four agents as a result of simply
executing gradient ascent, which may be detrimental for the coverage
application as the area covered does not remain connected.

(b) Final state for the proposed algorithm, executing the CBF with the
gradient ascent algorithm. As the agents move towards the maximum,
no holes appear in between the fields of view. Although the evolution
towards the maximum of the cost is slower than in (a) no holes appear.

Fig. 4. Performance of the control law in (14) without (a) and with (b)
the zeroing control barrier function.

allows the team to achieve the maximum. We can observe
that, in the case of the algorithm with the CBF, the maximum
attained is slightly lower than the value achieved for the run

without CBFs. However, as shown in Fig. 4, the performance
of the gradient ascent with CBF is, usually, superior from a
qualitatively point of view, as it ensures that no holes appear
in between the agents. In the case of the gradient ascent
without CBF, Fig. 4a the coverage is affected by the holes
that appear in the middle of the fields of view.

VI. CONCLUSIONS
In this paper, we introduced a visual coverage control

algorithm for teams of quadcopters equipped with downward
facing cameras. A new locational cost that quantifies the
coverage performance of the team was presented in terms
of their position and zoom while expanding the area covered
by the team as much as possible. However, we observed that,
given the limited range of the visual sensors, penalizing the
overlaps between the different fields of view may result in the
appearance of holes. We proposed a zeroing control barrier
function approach to ensure that no holes appear in between
the fields of view of neighboring robots. The performance
of the algorithm was validated through simulation, showing
that, even though the convergence towards the local maxi-
mum of the cost is slower for the case of the CBF, we can
guarantee that the coverage area has no holes.

APPENDIX
The derivative of the sensing function in (2) with respect

to the state of Quadcopter i can be written as,
∂f

∂pi
=
∂fpers

∂pi
fres + fpers

∂fres

∂pi
,

where we have suppressed the explicit dependency on pi and
q for notational convenience.

First, the derivative of fpers(pi, q) with respect to pi =
[xi, yi, zi, λi]

T is given by,

∂fpers

∂xi
= A(qx − xi),

∂fpers

∂yi
= A(qy − yi),

∂fpers

∂zi
= A(qz − zi) +

1

(1−B)‖q − pi‖
,

∂fpers

∂λi
=

(
zi − ‖q − pi‖
‖q − pi‖

)
r2√

λ2
i + r2

(√
λ2
i + r2 − λi

)2 ,

where q = [qx, qy, qz]
T and

A =
zi

1−B
1

‖q − pi‖3
, B =

λi√
λ2
i + r2

.

The derivative of fres(pi, q) with respect to pi,

∂fres

∂xi
= C(qx − xi),

∂fres

∂yi
= C(qy − yi),

∂fres

∂zi
= C(qz − zi),

∂fres

∂λi
=

κr2λκ

λi(λ2
i + r2)(

κ
2 +1)

exp

(
− (‖q − pi‖ −R)

2

2σ2

)
,

with

C = 2Bκ exp

(
− (‖q − pi‖ −R)

2

2σ2

)
(‖q − pi‖ −R)

2σ2‖q − pi‖
.
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